探索贝叶斯不确定性模型在图书类型分类中的应用

Srinath Srinivasan, S. G. Shivanirudh, Sujay Sathya, T. T. Mirnalinee
{"title":"探索贝叶斯不确定性模型在图书类型分类中的应用","authors":"Srinath Srinivasan, S. G. Shivanirudh, Sujay Sathya, T. T. Mirnalinee","doi":"10.1109/IAICT55358.2022.9887417","DOIUrl":null,"url":null,"abstract":"In this paper, we aim to model the Bayesian uncertainty of a model designed to solve the task of book genre classification. Model prediction confidence can judge the predictive quality and usability of predictions made from a machine learning model. This work explores two methods to ascertain model uncertainty using Monte Carlo dropouts and deep ensembling. We apply uncertainty modeling to a bidirectional LSTM model trained on the CMU book summary dataset to perform book genre classification from book summaries. We show how these techniques improve results by 14% from the best baseline model and discuss their feasibility in real-world scenarios.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Bayesian Uncertainty Modeling for Book Genre Classification\",\"authors\":\"Srinath Srinivasan, S. G. Shivanirudh, Sujay Sathya, T. T. Mirnalinee\",\"doi\":\"10.1109/IAICT55358.2022.9887417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we aim to model the Bayesian uncertainty of a model designed to solve the task of book genre classification. Model prediction confidence can judge the predictive quality and usability of predictions made from a machine learning model. This work explores two methods to ascertain model uncertainty using Monte Carlo dropouts and deep ensembling. We apply uncertainty modeling to a bidirectional LSTM model trained on the CMU book summary dataset to perform book genre classification from book summaries. We show how these techniques improve results by 14% from the best baseline model and discuss their feasibility in real-world scenarios.\",\"PeriodicalId\":154027,\"journal\":{\"name\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT55358.2022.9887417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们的目的是建立贝叶斯不确定性模型来解决图书类型分类的任务。模型预测置信度可以判断机器学习模型预测的预测质量和可用性。这项工作探讨了两种方法来确定模型的不确定性使用蒙特卡罗dropouts和深度集成。我们将不确定性建模应用于在CMU图书摘要数据集上训练的双向LSTM模型,从图书摘要中进行图书类型分类。我们展示了这些技术如何将最佳基线模型的结果提高14%,并讨论了它们在现实场景中的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Bayesian Uncertainty Modeling for Book Genre Classification
In this paper, we aim to model the Bayesian uncertainty of a model designed to solve the task of book genre classification. Model prediction confidence can judge the predictive quality and usability of predictions made from a machine learning model. This work explores two methods to ascertain model uncertainty using Monte Carlo dropouts and deep ensembling. We apply uncertainty modeling to a bidirectional LSTM model trained on the CMU book summary dataset to perform book genre classification from book summaries. We show how these techniques improve results by 14% from the best baseline model and discuss their feasibility in real-world scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信