暹罗网络的人物再识别

Newlin Shebiah Russel, S. Arivazhagan, S. G. Amrith, S. Adarsh
{"title":"暹罗网络的人物再识别","authors":"Newlin Shebiah Russel, S. Arivazhagan, S. G. Amrith, S. Adarsh","doi":"10.4114/intartif.vol26iss71pp25-33","DOIUrl":null,"url":null,"abstract":"Re-Identification of person aims at retrieval of person across multiple non overlapping camera. There was a huge gain in the computer vision community with the advancement of deep learning features and also the number of surveillance in videos increased. The challenges faced by person re-identification is low resolution images, pose variation etc., and convolutional neural networks are supported by a number of state-of-the-art algorithms for person re-identification. In this paper, Siamese network is used to predict the similarity or dissimilarity of a person across two cameras. It's a neural architecture that takes as input a pair of images or videos and the output as the prediction of similar and dissimilar persons along with their prediction scores. The experimentation is done by using datasets iLIDS-VID, PRID 2011 and obtained a recognition accuracy of 79.52% and 85.82% respectively.","PeriodicalId":176050,"journal":{"name":"Inteligencia Artif.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Person Re-Identification by Siamese Network\",\"authors\":\"Newlin Shebiah Russel, S. Arivazhagan, S. G. Amrith, S. Adarsh\",\"doi\":\"10.4114/intartif.vol26iss71pp25-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Re-Identification of person aims at retrieval of person across multiple non overlapping camera. There was a huge gain in the computer vision community with the advancement of deep learning features and also the number of surveillance in videos increased. The challenges faced by person re-identification is low resolution images, pose variation etc., and convolutional neural networks are supported by a number of state-of-the-art algorithms for person re-identification. In this paper, Siamese network is used to predict the similarity or dissimilarity of a person across two cameras. It's a neural architecture that takes as input a pair of images or videos and the output as the prediction of similar and dissimilar persons along with their prediction scores. The experimentation is done by using datasets iLIDS-VID, PRID 2011 and obtained a recognition accuracy of 79.52% and 85.82% respectively.\",\"PeriodicalId\":176050,\"journal\":{\"name\":\"Inteligencia Artif.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inteligencia Artif.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4114/intartif.vol26iss71pp25-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inteligencia Artif.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4114/intartif.vol26iss71pp25-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人的再识别的目标是跨多个不重叠的摄像头检索人。随着深度学习功能的进步和视频监控数量的增加,计算机视觉社区取得了巨大的进步。人脸再识别面临的挑战是低分辨率图像、姿态变化等,卷积神经网络得到了许多最先进算法的支持。在本文中,使用暹罗网络来预测一个人在两个摄像机上的相似或不相似。它是一种神经结构,输入一对图像或视频,输出是对相似和不同的人的预测以及他们的预测分数。利用iLIDS-VID、PRID 2011数据集进行实验,分别获得了79.52%和85.82%的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Person Re-Identification by Siamese Network
Re-Identification of person aims at retrieval of person across multiple non overlapping camera. There was a huge gain in the computer vision community with the advancement of deep learning features and also the number of surveillance in videos increased. The challenges faced by person re-identification is low resolution images, pose variation etc., and convolutional neural networks are supported by a number of state-of-the-art algorithms for person re-identification. In this paper, Siamese network is used to predict the similarity or dissimilarity of a person across two cameras. It's a neural architecture that takes as input a pair of images or videos and the output as the prediction of similar and dissimilar persons along with their prediction scores. The experimentation is done by using datasets iLIDS-VID, PRID 2011 and obtained a recognition accuracy of 79.52% and 85.82% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信