入侵检测系统中基于自编码器的特征自动提取

Yesi Novaria Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, Firdaus Jasmir
{"title":"入侵检测系统中基于自编码器的特征自动提取","authors":"Yesi Novaria Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, Firdaus Jasmir","doi":"10.1109/ICECOS.2018.8605181","DOIUrl":null,"url":null,"abstract":"Intrusion Detection System (IDS) can detect attacks by analysing the patterns of data traffic in the network. With a large amount of data that is processed in the IDS, then need to do a feature extraction to reduce the computational cost of processing raw data in IDS. Feature extraction will transform features to the lower dimension to accelerate the learning process and improve the accuracy. This research on automatic feature extraction using simple autoencoder and SVM to classify attacks on IDS. We use various functions activation and loss to see how far this feature extraction feature can improve accuracy. We use Datasets KDD Cup‘ 99 NSL-KDD and to evaluate the effectiveness of the mechanisms of detection after extraction features process. In the proposed model, the activation functions autoencoder hyperparameter ReLU activation and loss function cross-entropy gives best accuracy value than other functions.","PeriodicalId":149318,"journal":{"name":"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Automatic Features Extraction Using Autoencoder in Intrusion Detection System\",\"authors\":\"Yesi Novaria Kunang, S. Nurmaini, D. Stiawan, A. Zarkasi, Firdaus Jasmir\",\"doi\":\"10.1109/ICECOS.2018.8605181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion Detection System (IDS) can detect attacks by analysing the patterns of data traffic in the network. With a large amount of data that is processed in the IDS, then need to do a feature extraction to reduce the computational cost of processing raw data in IDS. Feature extraction will transform features to the lower dimension to accelerate the learning process and improve the accuracy. This research on automatic feature extraction using simple autoencoder and SVM to classify attacks on IDS. We use various functions activation and loss to see how far this feature extraction feature can improve accuracy. We use Datasets KDD Cup‘ 99 NSL-KDD and to evaluate the effectiveness of the mechanisms of detection after extraction features process. In the proposed model, the activation functions autoencoder hyperparameter ReLU activation and loss function cross-entropy gives best accuracy value than other functions.\",\"PeriodicalId\":149318,\"journal\":{\"name\":\"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECOS.2018.8605181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electrical Engineering and Computer Science (ICECOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECOS.2018.8605181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

入侵检测系统(IDS)通过分析网络中的数据流量模式来检测攻击。对于在IDS中处理的大量数据,需要进行特征提取,以降低在IDS中处理原始数据的计算成本。特征提取将特征转换到较低的维度,加快学习过程,提高准确率。本文研究了基于简单自编码器和支持向量机的自动特征提取方法对入侵检测系统的攻击进行分类。我们使用各种函数激活和损失来看看这个特征提取特征能在多大程度上提高准确率。我们使用数据集KDD Cup ' 99 NSL-KDD,并在提取特征过程后评估检测机制的有效性。在该模型中,激活函数自编码器超参数ReLU激活和损失函数交叉熵比其他函数具有最好的精度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Features Extraction Using Autoencoder in Intrusion Detection System
Intrusion Detection System (IDS) can detect attacks by analysing the patterns of data traffic in the network. With a large amount of data that is processed in the IDS, then need to do a feature extraction to reduce the computational cost of processing raw data in IDS. Feature extraction will transform features to the lower dimension to accelerate the learning process and improve the accuracy. This research on automatic feature extraction using simple autoencoder and SVM to classify attacks on IDS. We use various functions activation and loss to see how far this feature extraction feature can improve accuracy. We use Datasets KDD Cup‘ 99 NSL-KDD and to evaluate the effectiveness of the mechanisms of detection after extraction features process. In the proposed model, the activation functions autoencoder hyperparameter ReLU activation and loss function cross-entropy gives best accuracy value than other functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信