Manchun Lei, A. Minghelli-Roman, S. Mathieu, P. Gouton
{"title":"海洋色彩专用地球同步传感器的图像仿真","authors":"Manchun Lei, A. Minghelli-Roman, S. Mathieu, P. Gouton","doi":"10.1109/WHISPERS.2010.5594969","DOIUrl":null,"url":null,"abstract":"A method of image simulation of geostationary sensor dedicated to ocean color for open water (case1) and coastal water (case2) is presented in this paper. This method uses HYDROLIGHT to model the radiative transfer in order to obtain the water surface radiance. MeRIS level 3 products have been used for input water components to provide a realistic spatial distribution. The atmospheric radiative transfer model and the sensor model finely lead to satellite remote sensing images. This system allows to evaluate the dynamic range of BOA and TOA radiances depending on solar and viewing angles in operational situation and latter their influence on water composition retrieval.","PeriodicalId":193944,"journal":{"name":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image simulation of geostationary sensor dedicated to ocean color\",\"authors\":\"Manchun Lei, A. Minghelli-Roman, S. Mathieu, P. Gouton\",\"doi\":\"10.1109/WHISPERS.2010.5594969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of image simulation of geostationary sensor dedicated to ocean color for open water (case1) and coastal water (case2) is presented in this paper. This method uses HYDROLIGHT to model the radiative transfer in order to obtain the water surface radiance. MeRIS level 3 products have been used for input water components to provide a realistic spatial distribution. The atmospheric radiative transfer model and the sensor model finely lead to satellite remote sensing images. This system allows to evaluate the dynamic range of BOA and TOA radiances depending on solar and viewing angles in operational situation and latter their influence on water composition retrieval.\",\"PeriodicalId\":193944,\"journal\":{\"name\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"198 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2010.5594969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2010.5594969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image simulation of geostationary sensor dedicated to ocean color
A method of image simulation of geostationary sensor dedicated to ocean color for open water (case1) and coastal water (case2) is presented in this paper. This method uses HYDROLIGHT to model the radiative transfer in order to obtain the water surface radiance. MeRIS level 3 products have been used for input water components to provide a realistic spatial distribution. The atmospheric radiative transfer model and the sensor model finely lead to satellite remote sensing images. This system allows to evaluate the dynamic range of BOA and TOA radiances depending on solar and viewing angles in operational situation and latter their influence on water composition retrieval.