变电站巡检机器人的研制与实现

Haojie Zhang, Bo Su, Haiping Song, W. Xiong
{"title":"变电站巡检机器人的研制与实现","authors":"Haojie Zhang, Bo Su, Haiping Song, W. Xiong","doi":"10.1109/IVS.2015.7225673","DOIUrl":null,"url":null,"abstract":"Along with the development demand of intelligent power substation, mobile robot is implemented to serve power substations. The robot is equipped with inspecting sensors, such as CCD camera and thermal infrared imager which are together referred to as workload. These inspecting sensors are used to detect the environment parameters e.g. reading meter, measuring temperature etc., inside the substation. However, due to the strong electromagnetic interference inside substation, accurate localization of the workload and inspection robot is still a difficult problem to be solved. Existing methods solve the problem by paving magnetic strips or rail. However, in this way, the working area of the robot is limited by the paved infrastructures. In this paper, an inspection robot system is developed for working in substation. In the proposed system, the localization of the robot is realized using adaptive Monte-Carlo localization based on the known environment model. A visual servo system is designed to realize the high accuracy localization of the workload. The proposed robot system should guarantee to obtain fine inspecting results of equipments in substation.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Development and implement of an inspection robot for power substation\",\"authors\":\"Haojie Zhang, Bo Su, Haiping Song, W. Xiong\",\"doi\":\"10.1109/IVS.2015.7225673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Along with the development demand of intelligent power substation, mobile robot is implemented to serve power substations. The robot is equipped with inspecting sensors, such as CCD camera and thermal infrared imager which are together referred to as workload. These inspecting sensors are used to detect the environment parameters e.g. reading meter, measuring temperature etc., inside the substation. However, due to the strong electromagnetic interference inside substation, accurate localization of the workload and inspection robot is still a difficult problem to be solved. Existing methods solve the problem by paving magnetic strips or rail. However, in this way, the working area of the robot is limited by the paved infrastructures. In this paper, an inspection robot system is developed for working in substation. In the proposed system, the localization of the robot is realized using adaptive Monte-Carlo localization based on the known environment model. A visual servo system is designed to realize the high accuracy localization of the workload. The proposed robot system should guarantee to obtain fine inspecting results of equipments in substation.\",\"PeriodicalId\":294701,\"journal\":{\"name\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2015.7225673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

随着智能化变电站的发展需求,实现了移动机器人为变电站服务。机器人配备了检测传感器,如CCD相机和热红外成像仪,这些传感器统称为工作负载。这些检测传感器用于检测变电站内部的环境参数,如抄表、测温等。然而,由于变电站内部存在较强的电磁干扰,对工作量和巡检机器人的准确定位仍然是一个亟待解决的难题。现有的方法是通过铺设磁条或轨道来解决问题。然而,这样一来,机器人的工作区域受到铺设的基础设施的限制。本文研制了一种变电站巡检机器人系统。在该系统中,基于已知的环境模型,采用自适应蒙特卡罗定位方法实现机器人的定位。为实现工作负载的高精度定位,设计了视觉伺服系统。所提出的机器人系统应能保证对变电站设备进行良好的巡检。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and implement of an inspection robot for power substation
Along with the development demand of intelligent power substation, mobile robot is implemented to serve power substations. The robot is equipped with inspecting sensors, such as CCD camera and thermal infrared imager which are together referred to as workload. These inspecting sensors are used to detect the environment parameters e.g. reading meter, measuring temperature etc., inside the substation. However, due to the strong electromagnetic interference inside substation, accurate localization of the workload and inspection robot is still a difficult problem to be solved. Existing methods solve the problem by paving magnetic strips or rail. However, in this way, the working area of the robot is limited by the paved infrastructures. In this paper, an inspection robot system is developed for working in substation. In the proposed system, the localization of the robot is realized using adaptive Monte-Carlo localization based on the known environment model. A visual servo system is designed to realize the high accuracy localization of the workload. The proposed robot system should guarantee to obtain fine inspecting results of equipments in substation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信