基于遗传算法的高成长企业预测变量选择方法

Anna Kusetogullari, H. Kusetogullari, Amir Yavariabdi, Martin Andersson, Johan Eklund
{"title":"基于遗传算法的高成长企业预测变量选择方法","authors":"Anna Kusetogullari, H. Kusetogullari, Amir Yavariabdi, Martin Andersson, Johan Eklund","doi":"10.1109/ICECCME55909.2022.9988729","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method for high-growth firm prediction by minimizing a cost function using a Genetic Algorithm (GA). To achieve it, the GA is used to search to find a set of important variables which provide the best fit for machine learning models so that accurate predictions can be made for high-growth firm prediction. The GA is employed to optimize the mean square error (MSE) between the accurate results and the predicted results of the machine learning methods by evolving the initially generated binary solutions through iterations. The proposed method obtains the best fitting set of variables for the machine learning methods for high-growth firm prediction. Four different machine learning methods which are Support Vector Machines (SVM), Logistic Regression, Random Forest (RF) and K-Nearest Neighbor (K-NN) have been employed with the GA and experimental results show that using RF with the GA achieves the best accuracy results with 94.93%.","PeriodicalId":202568,"journal":{"name":"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genetic Algorithm-based Variable Selection Approach for High-Growth Firm Prediction\",\"authors\":\"Anna Kusetogullari, H. Kusetogullari, Amir Yavariabdi, Martin Andersson, Johan Eklund\",\"doi\":\"10.1109/ICECCME55909.2022.9988729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method for high-growth firm prediction by minimizing a cost function using a Genetic Algorithm (GA). To achieve it, the GA is used to search to find a set of important variables which provide the best fit for machine learning models so that accurate predictions can be made for high-growth firm prediction. The GA is employed to optimize the mean square error (MSE) between the accurate results and the predicted results of the machine learning methods by evolving the initially generated binary solutions through iterations. The proposed method obtains the best fitting set of variables for the machine learning methods for high-growth firm prediction. Four different machine learning methods which are Support Vector Machines (SVM), Logistic Regression, Random Forest (RF) and K-Nearest Neighbor (K-NN) have been employed with the GA and experimental results show that using RF with the GA achieves the best accuracy results with 94.93%.\",\"PeriodicalId\":202568,\"journal\":{\"name\":\"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECCME55909.2022.9988729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCME55909.2022.9988729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用遗传算法最小化成本函数的高增长企业预测方法。为了实现这一目标,遗传算法被用来搜索一组重要的变量,这些变量为机器学习模型提供了最佳的拟合,以便对高增长公司的预测做出准确的预测。采用遗传算法对初始生成的二元解进行迭代,优化机器学习方法的准确结果与预测结果之间的均方误差(MSE)。该方法为高增长企业预测的机器学习方法获得了最佳的变量拟合集。将支持向量机(SVM)、逻辑回归、随机森林(RF)和k -近邻(K-NN)四种不同的机器学习方法与遗传算法结合使用,实验结果表明,将RF与遗传算法结合使用,准确率达到94.93%,达到最佳效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Algorithm-based Variable Selection Approach for High-Growth Firm Prediction
In this paper, we propose a novel method for high-growth firm prediction by minimizing a cost function using a Genetic Algorithm (GA). To achieve it, the GA is used to search to find a set of important variables which provide the best fit for machine learning models so that accurate predictions can be made for high-growth firm prediction. The GA is employed to optimize the mean square error (MSE) between the accurate results and the predicted results of the machine learning methods by evolving the initially generated binary solutions through iterations. The proposed method obtains the best fitting set of variables for the machine learning methods for high-growth firm prediction. Four different machine learning methods which are Support Vector Machines (SVM), Logistic Regression, Random Forest (RF) and K-Nearest Neighbor (K-NN) have been employed with the GA and experimental results show that using RF with the GA achieves the best accuracy results with 94.93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信