基于批量梯度下降的WMMSE速率分割策略优化

Zhijie Wang, Ruhui Ma, Hongjian Shi, Liwei Lin, Haibing Guan
{"title":"基于批量梯度下降的WMMSE速率分割策略优化","authors":"Zhijie Wang, Ruhui Ma, Hongjian Shi, Liwei Lin, Haibing Guan","doi":"10.1109/ISWCS56560.2022.9940341","DOIUrl":null,"url":null,"abstract":"Rate Splitting (RS) multiple access is a general and robust multiple access framework for downlink multi-antenna communication systems, which splits each user's message into common and private parts, and superposes the common message and the private message for transmission. To find the transmit beamforming design, the Alternate Optimization Weighted Minimize MSE (AO-WMMSE) algorithm is often used as one of the approaches to maximize WSR due to its low computational complexity and good convergence. However, AO-WMMSE is inefficient in large-scale calculations and when the number of users and antennas is large. We propose a Batch Gradient Descent-based Weighted Minimum MSE (BGD-WMMSE) method rapidly optimize the linear precoder for large-scale data computing. Simulations show that BGD-WMMSE can achieve the same size of maximum achievable rate region as AO-WMMSE in one-layer RS deployment.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Batch Gradient Descent-based Optimization of WMMSE for Rate Splitting Strategy\",\"authors\":\"Zhijie Wang, Ruhui Ma, Hongjian Shi, Liwei Lin, Haibing Guan\",\"doi\":\"10.1109/ISWCS56560.2022.9940341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rate Splitting (RS) multiple access is a general and robust multiple access framework for downlink multi-antenna communication systems, which splits each user's message into common and private parts, and superposes the common message and the private message for transmission. To find the transmit beamforming design, the Alternate Optimization Weighted Minimize MSE (AO-WMMSE) algorithm is often used as one of the approaches to maximize WSR due to its low computational complexity and good convergence. However, AO-WMMSE is inefficient in large-scale calculations and when the number of users and antennas is large. We propose a Batch Gradient Descent-based Weighted Minimum MSE (BGD-WMMSE) method rapidly optimize the linear precoder for large-scale data computing. Simulations show that BGD-WMMSE can achieve the same size of maximum achievable rate region as AO-WMMSE in one-layer RS deployment.\",\"PeriodicalId\":141258,\"journal\":{\"name\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Wireless Communication Systems (ISWCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISWCS56560.2022.9940341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

RS (Rate Splitting)多址是下行链路多天线通信系统中通用的、鲁棒的多址框架,它将每个用户的报文分成公用和专用两部分,并将公用报文和专用报文叠加传输。为了寻找发射波束形成设计,AO-WMMSE算法由于其计算复杂度低、收敛性好,常被用作最大波束形成的方法之一。但是,在大规模计算以及用户和天线数量较大的情况下,AO-WMMSE的效率较低。提出了一种基于批处理梯度下降的加权最小均方差(BGD-WMMSE)方法,可快速优化用于大规模数据计算的线性预编码器。仿真结果表明,在单层RS部署中,BGD-WMMSE可以实现与AO-WMMSE相同大小的最大可达速率区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Batch Gradient Descent-based Optimization of WMMSE for Rate Splitting Strategy
Rate Splitting (RS) multiple access is a general and robust multiple access framework for downlink multi-antenna communication systems, which splits each user's message into common and private parts, and superposes the common message and the private message for transmission. To find the transmit beamforming design, the Alternate Optimization Weighted Minimize MSE (AO-WMMSE) algorithm is often used as one of the approaches to maximize WSR due to its low computational complexity and good convergence. However, AO-WMMSE is inefficient in large-scale calculations and when the number of users and antennas is large. We propose a Batch Gradient Descent-based Weighted Minimum MSE (BGD-WMMSE) method rapidly optimize the linear precoder for large-scale data computing. Simulations show that BGD-WMMSE can achieve the same size of maximum achievable rate region as AO-WMMSE in one-layer RS deployment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信