eHSim:基于MapReduce的高效混合相似度搜索

T. Phan, J. Küng, T. K. Dang
{"title":"eHSim:基于MapReduce的高效混合相似度搜索","authors":"T. Phan, J. Küng, T. K. Dang","doi":"10.1109/AINA.2016.37","DOIUrl":null,"url":null,"abstract":"In this paper, we study the problems of scalability and performance for similarity search by proposing eHSim, an efficient hybrid similarity search with MapReduce. More specifically, we introduce clustering schemes that partition objects into different groups by their length. Additionally, we equip our proposed schemes with pruning strategies that quickly discard irrelevant objects before truly computing their similarity. Moreover, we design a hybrid MapReduce architecture that deals with challenges from big data. Furthermore, we implement our proposed methods with MapReduce and make them compatible with the hybrid MapReduce architecture. Last but not least, we evaluate the proposed methods with real datasets. Empirical experiments show that our approach is considerably more efficient than state-of-the-arts in terms of query processing, batch processing, and data storage.","PeriodicalId":438655,"journal":{"name":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"eHSim: An Efficient Hybrid Similarity Search with MapReduce\",\"authors\":\"T. Phan, J. Küng, T. K. Dang\",\"doi\":\"10.1109/AINA.2016.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the problems of scalability and performance for similarity search by proposing eHSim, an efficient hybrid similarity search with MapReduce. More specifically, we introduce clustering schemes that partition objects into different groups by their length. Additionally, we equip our proposed schemes with pruning strategies that quickly discard irrelevant objects before truly computing their similarity. Moreover, we design a hybrid MapReduce architecture that deals with challenges from big data. Furthermore, we implement our proposed methods with MapReduce and make them compatible with the hybrid MapReduce architecture. Last but not least, we evaluate the proposed methods with real datasets. Empirical experiments show that our approach is considerably more efficient than state-of-the-arts in terms of query processing, batch processing, and data storage.\",\"PeriodicalId\":438655,\"journal\":{\"name\":\"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINA.2016.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2016.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于MapReduce的高效混合相似度搜索算法eHSim,研究了相似度搜索的可扩展性和性能问题。更具体地说,我们引入了根据长度将对象划分为不同组的聚类方案。此外,我们为我们提出的方案配备了修剪策略,在真正计算其相似度之前快速丢弃无关对象。此外,我们设计了一个混合MapReduce架构,以应对大数据的挑战。此外,我们在MapReduce中实现了我们提出的方法,并使它们与混合MapReduce架构兼容。最后,我们用实际数据集对所提出的方法进行了评估。经验实验表明,我们的方法在查询处理、批处理和数据存储方面比目前的技术水平要高效得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
eHSim: An Efficient Hybrid Similarity Search with MapReduce
In this paper, we study the problems of scalability and performance for similarity search by proposing eHSim, an efficient hybrid similarity search with MapReduce. More specifically, we introduce clustering schemes that partition objects into different groups by their length. Additionally, we equip our proposed schemes with pruning strategies that quickly discard irrelevant objects before truly computing their similarity. Moreover, we design a hybrid MapReduce architecture that deals with challenges from big data. Furthermore, we implement our proposed methods with MapReduce and make them compatible with the hybrid MapReduce architecture. Last but not least, we evaluate the proposed methods with real datasets. Empirical experiments show that our approach is considerably more efficient than state-of-the-arts in terms of query processing, batch processing, and data storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信