Maria Pedroto, A. Jorge, João Mendes-Moreira, T. Coelho
{"title":"有家谱特征的TTR-FAP患者的发病年龄预测","authors":"Maria Pedroto, A. Jorge, João Mendes-Moreira, T. Coelho","doi":"10.1109/CBMS.2018.00042","DOIUrl":null,"url":null,"abstract":"This work describes a problem oriented approach to analyze and predict the Age of Onset of Patients diagnosed with Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP). We constructed, from a set of clinical and familial records, three sets of features which represent different characteristics of a patient, before becoming symptomatic. Using those features, we tested a set of machine learning regression methods, namely Decision Tree (Regression Tree), Elastic Net, Lasso, Linear Regression, Random Forest Regressor, Ridge Regression and Support Vector Machine Regressor (SVM). Later, we defined a baseline model that represents the current medical practice to serve as a guideline for us to measure the accuracy of our approach. Our results show a significant improvement of machine learning methods when compared with the current baseline.","PeriodicalId":229453,"journal":{"name":"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Age of Onset in TTR-FAP Patients with Genealogical Features\",\"authors\":\"Maria Pedroto, A. Jorge, João Mendes-Moreira, T. Coelho\",\"doi\":\"10.1109/CBMS.2018.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a problem oriented approach to analyze and predict the Age of Onset of Patients diagnosed with Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP). We constructed, from a set of clinical and familial records, three sets of features which represent different characteristics of a patient, before becoming symptomatic. Using those features, we tested a set of machine learning regression methods, namely Decision Tree (Regression Tree), Elastic Net, Lasso, Linear Regression, Random Forest Regressor, Ridge Regression and Support Vector Machine Regressor (SVM). Later, we defined a baseline model that represents the current medical practice to serve as a guideline for us to measure the accuracy of our approach. Our results show a significant improvement of machine learning methods when compared with the current baseline.\",\"PeriodicalId\":229453,\"journal\":{\"name\":\"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2018.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Age of Onset in TTR-FAP Patients with Genealogical Features
This work describes a problem oriented approach to analyze and predict the Age of Onset of Patients diagnosed with Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP). We constructed, from a set of clinical and familial records, three sets of features which represent different characteristics of a patient, before becoming symptomatic. Using those features, we tested a set of machine learning regression methods, namely Decision Tree (Regression Tree), Elastic Net, Lasso, Linear Regression, Random Forest Regressor, Ridge Regression and Support Vector Machine Regressor (SVM). Later, we defined a baseline model that represents the current medical practice to serve as a guideline for us to measure the accuracy of our approach. Our results show a significant improvement of machine learning methods when compared with the current baseline.