有家谱特征的TTR-FAP患者的发病年龄预测

Maria Pedroto, A. Jorge, João Mendes-Moreira, T. Coelho
{"title":"有家谱特征的TTR-FAP患者的发病年龄预测","authors":"Maria Pedroto, A. Jorge, João Mendes-Moreira, T. Coelho","doi":"10.1109/CBMS.2018.00042","DOIUrl":null,"url":null,"abstract":"This work describes a problem oriented approach to analyze and predict the Age of Onset of Patients diagnosed with Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP). We constructed, from a set of clinical and familial records, three sets of features which represent different characteristics of a patient, before becoming symptomatic. Using those features, we tested a set of machine learning regression methods, namely Decision Tree (Regression Tree), Elastic Net, Lasso, Linear Regression, Random Forest Regressor, Ridge Regression and Support Vector Machine Regressor (SVM). Later, we defined a baseline model that represents the current medical practice to serve as a guideline for us to measure the accuracy of our approach. Our results show a significant improvement of machine learning methods when compared with the current baseline.","PeriodicalId":229453,"journal":{"name":"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Predicting Age of Onset in TTR-FAP Patients with Genealogical Features\",\"authors\":\"Maria Pedroto, A. Jorge, João Mendes-Moreira, T. Coelho\",\"doi\":\"10.1109/CBMS.2018.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a problem oriented approach to analyze and predict the Age of Onset of Patients diagnosed with Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP). We constructed, from a set of clinical and familial records, three sets of features which represent different characteristics of a patient, before becoming symptomatic. Using those features, we tested a set of machine learning regression methods, namely Decision Tree (Regression Tree), Elastic Net, Lasso, Linear Regression, Random Forest Regressor, Ridge Regression and Support Vector Machine Regressor (SVM). Later, we defined a baseline model that represents the current medical practice to serve as a guideline for us to measure the accuracy of our approach. Our results show a significant improvement of machine learning methods when compared with the current baseline.\",\"PeriodicalId\":229453,\"journal\":{\"name\":\"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2018.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2018.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究描述了一种以问题为导向的方法来分析和预测经甲状腺素家族性淀粉样蛋白多发性神经病(TTR-FAP)患者的发病年龄。我们从一组临床和家族记录中构建了三组特征,这些特征代表了患者在出现症状之前的不同特征。利用这些特征,我们测试了一组机器学习回归方法,即决策树(回归树),弹性网,Lasso,线性回归,随机森林回归,岭回归和支持向量机回归(SVM)。后来,我们定义了一个代表当前医疗实践的基线模型,作为我们衡量方法准确性的指导方针。我们的结果显示,与当前基线相比,机器学习方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Age of Onset in TTR-FAP Patients with Genealogical Features
This work describes a problem oriented approach to analyze and predict the Age of Onset of Patients diagnosed with Transthyretin Familial Amyloid Polyneuropathy (TTR-FAP). We constructed, from a set of clinical and familial records, three sets of features which represent different characteristics of a patient, before becoming symptomatic. Using those features, we tested a set of machine learning regression methods, namely Decision Tree (Regression Tree), Elastic Net, Lasso, Linear Regression, Random Forest Regressor, Ridge Regression and Support Vector Machine Regressor (SVM). Later, we defined a baseline model that represents the current medical practice to serve as a guideline for us to measure the accuracy of our approach. Our results show a significant improvement of machine learning methods when compared with the current baseline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信