基于监督算法的网络流量勒索软件识别的实证比较

C. Manzano, Claudio Meneses Villegas, Paul Leger
{"title":"基于监督算法的网络流量勒索软件识别的实证比较","authors":"C. Manzano, Claudio Meneses Villegas, Paul Leger","doi":"10.1109/SCCC51225.2020.9281283","DOIUrl":null,"url":null,"abstract":"Android mobile systems are currently the main target of malware attacks. In this sense, machine learning is a suitable approach to analyze network traffic, and it generally achieves good results in the identification and detection of malware. However, an underlying problem is creating a dataset with network characteristics that accurately reflect the malwareś behavior. Characterizing adequately the dataset is a relevant process to identify malware with high precision when using traditional machine learning algorithms. This paper compares empirically three supervised machine learning algorithms, in order to identify ransomware traffic based on Android mobile network traffic features. We consider 9 features related to time properties of flows and bidirectional packets in 10 families of ransomware and different benign application Android network traffic. Empirical results show that Random Forest (RF) achieved a 96% accuracy in classifying ransomware, higher than Decision Tree (DT) and K-Nearest Neighbor (KNN) approaches. We conclude that the selected features allow us to identify ransomware traffic and differentiate it from the traffic of benign applications.","PeriodicalId":117157,"journal":{"name":"2020 39th International Conference of the Chilean Computer Science Society (SCCC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"An Empirical Comparison of Supervised Algorithms for Ransomware Identification on Network Traffic\",\"authors\":\"C. Manzano, Claudio Meneses Villegas, Paul Leger\",\"doi\":\"10.1109/SCCC51225.2020.9281283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Android mobile systems are currently the main target of malware attacks. In this sense, machine learning is a suitable approach to analyze network traffic, and it generally achieves good results in the identification and detection of malware. However, an underlying problem is creating a dataset with network characteristics that accurately reflect the malwareś behavior. Characterizing adequately the dataset is a relevant process to identify malware with high precision when using traditional machine learning algorithms. This paper compares empirically three supervised machine learning algorithms, in order to identify ransomware traffic based on Android mobile network traffic features. We consider 9 features related to time properties of flows and bidirectional packets in 10 families of ransomware and different benign application Android network traffic. Empirical results show that Random Forest (RF) achieved a 96% accuracy in classifying ransomware, higher than Decision Tree (DT) and K-Nearest Neighbor (KNN) approaches. We conclude that the selected features allow us to identify ransomware traffic and differentiate it from the traffic of benign applications.\",\"PeriodicalId\":117157,\"journal\":{\"name\":\"2020 39th International Conference of the Chilean Computer Science Society (SCCC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 39th International Conference of the Chilean Computer Science Society (SCCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCC51225.2020.9281283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 39th International Conference of the Chilean Computer Science Society (SCCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCC51225.2020.9281283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

Android移动系统目前是恶意软件攻击的主要目标。从这个意义上说,机器学习是一种适合分析网络流量的方法,并且在恶意软件的识别和检测方面通常取得了很好的效果。然而,一个潜在的问题是创建一个具有准确反映恶意软件行为的网络特征的数据集。在使用传统的机器学习算法时,充分表征数据集是高精度识别恶意软件的相关过程。本文对三种监督式机器学习算法进行了实证比较,以期基于Android移动网络流量特征识别勒索软件流量。我们考虑了10个勒索软件家族和不同的良性应用Android网络流量中与流量和双向数据包的时间属性相关的9个特征。实验结果表明,随机森林(RF)对勒索软件的分类准确率达到96%,高于决策树(DT)和k -最近邻(KNN)方法。我们得出结论,所选择的特征使我们能够识别勒索软件流量,并将其与良性应用程序的流量区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Empirical Comparison of Supervised Algorithms for Ransomware Identification on Network Traffic
Android mobile systems are currently the main target of malware attacks. In this sense, machine learning is a suitable approach to analyze network traffic, and it generally achieves good results in the identification and detection of malware. However, an underlying problem is creating a dataset with network characteristics that accurately reflect the malwareś behavior. Characterizing adequately the dataset is a relevant process to identify malware with high precision when using traditional machine learning algorithms. This paper compares empirically three supervised machine learning algorithms, in order to identify ransomware traffic based on Android mobile network traffic features. We consider 9 features related to time properties of flows and bidirectional packets in 10 families of ransomware and different benign application Android network traffic. Empirical results show that Random Forest (RF) achieved a 96% accuracy in classifying ransomware, higher than Decision Tree (DT) and K-Nearest Neighbor (KNN) approaches. We conclude that the selected features allow us to identify ransomware traffic and differentiate it from the traffic of benign applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信