基于几何哈希的三维物体识别

Omer Eskizara, E. Akagunduz, ilkay Ulusoy
{"title":"基于几何哈希的三维物体识别","authors":"Omer Eskizara, E. Akagunduz, ilkay Ulusoy","doi":"10.1109/SIU.2009.5136550","DOIUrl":null,"url":null,"abstract":"Using transform invariant 3D fatures obtained from a database of 3D range images, geometric hashing is applied for the purpose of 3D object recognition. Mean (H) and Gaussian (K) curvature values within a scale-space of the surface is used. Since H and K values are used and a scale-space of the surface is constructed the method is independent of transformation and resolution. The method is tested on the Stuttgart 3D range image databe [1].","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"3D object recognition by geometric hashing\",\"authors\":\"Omer Eskizara, E. Akagunduz, ilkay Ulusoy\",\"doi\":\"10.1109/SIU.2009.5136550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using transform invariant 3D fatures obtained from a database of 3D range images, geometric hashing is applied for the purpose of 3D object recognition. Mean (H) and Gaussian (K) curvature values within a scale-space of the surface is used. Since H and K values are used and a scale-space of the surface is constructed the method is independent of transformation and resolution. The method is tested on the Stuttgart 3D range image databe [1].\",\"PeriodicalId\":219938,\"journal\":{\"name\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2009.5136550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用从三维距离图像数据库中获得的变换不变三维特征,将几何哈希算法应用于三维目标识别。使用曲面尺度空间内的平均(H)和高斯(K)曲率值。由于使用了H和K值,并且构造了曲面的尺度空间,因此该方法不依赖于变换和分辨率。在斯图加特三维距离图像数据库[1]上对该方法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D object recognition by geometric hashing
Using transform invariant 3D fatures obtained from a database of 3D range images, geometric hashing is applied for the purpose of 3D object recognition. Mean (H) and Gaussian (K) curvature values within a scale-space of the surface is used. Since H and K values are used and a scale-space of the surface is constructed the method is independent of transformation and resolution. The method is tested on the Stuttgart 3D range image databe [1].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信