机器人操纵臂的实时分散神经反步控制器

R. García-Hernández, E. Sánchez, V. Santibáñez, M. Llama, E. Bayro-Corrochano
{"title":"机器人操纵臂的实时分散神经反步控制器","authors":"R. García-Hernández, E. Sánchez, V. Santibáñez, M. Llama, E. Bayro-Corrochano","doi":"10.1109/CCA.2009.5280998","DOIUrl":null,"url":null,"abstract":"This paper deals with adaptive trajectory tracking for discrete-time MIMO nonlinear systems. A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The proposed scheme is implemented in real-time to control a two DOF robot manipulator.","PeriodicalId":294950,"journal":{"name":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-time decentralized neural backstepping controller for a robot manipulator\",\"authors\":\"R. García-Hernández, E. Sánchez, V. Santibáñez, M. Llama, E. Bayro-Corrochano\",\"doi\":\"10.1109/CCA.2009.5280998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with adaptive trajectory tracking for discrete-time MIMO nonlinear systems. A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The proposed scheme is implemented in real-time to control a two DOF robot manipulator.\",\"PeriodicalId\":294950,\"journal\":{\"name\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2009.5280998\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2009.5280998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了离散多输入多输出非线性系统的自适应轨迹跟踪问题。采用高阶神经网络(HONN)对应用于块严格反馈形式(BSFF)的反步技术设计的分散控制律进行逼近。通过扩展卡尔曼滤波(EKF)算法在线学习HONN。将该方法应用于二自由度机器人的实时控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time decentralized neural backstepping controller for a robot manipulator
This paper deals with adaptive trajectory tracking for discrete-time MIMO nonlinear systems. A high order neural network (HONN) is used to approximate a decentralized control law designed by the backstepping technique as applied to a block strict feedback form (BSFF). The HONN learning is performed online by an Extended Kalman Filter (EKF) algorithm. The proposed scheme is implemented in real-time to control a two DOF robot manipulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信