用连续体方法模拟树枝晶生长的有限元

Jie Wu, B. Jiang
{"title":"用连续体方法模拟树枝晶生长的有限元","authors":"Jie Wu, B. Jiang","doi":"10.1142/S1465876304002319","DOIUrl":null,"url":null,"abstract":"A numerical method is presented to simulate dendritic crystal growth on a fixed mesh. The hyperbolic convective equation for the continuous phase field which identifies the solid and liquid phases is solved by the least-squares finite element method, and the heat conduction equation for the temperature field is solved by the Galerkin finite element method. Without special treatments this method can handle complicated interfacial shapes and physical features.","PeriodicalId":331001,"journal":{"name":"Int. J. Comput. Eng. Sci.","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element simulation of dendritic crystal growth using a continuum approach\",\"authors\":\"Jie Wu, B. Jiang\",\"doi\":\"10.1142/S1465876304002319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical method is presented to simulate dendritic crystal growth on a fixed mesh. The hyperbolic convective equation for the continuous phase field which identifies the solid and liquid phases is solved by the least-squares finite element method, and the heat conduction equation for the temperature field is solved by the Galerkin finite element method. Without special treatments this method can handle complicated interfacial shapes and physical features.\",\"PeriodicalId\":331001,\"journal\":{\"name\":\"Int. J. Comput. Eng. Sci.\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Eng. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1465876304002319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Eng. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1465876304002319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种在固定网格上模拟枝晶生长的数值方法。用最小二乘有限元法求解了识别固、液相的连续相场双曲对流方程,用伽辽金有限元法求解了温度场的热传导方程。该方法无需特殊处理即可处理复杂的界面形状和物理特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite element simulation of dendritic crystal growth using a continuum approach
A numerical method is presented to simulate dendritic crystal growth on a fixed mesh. The hyperbolic convective equation for the continuous phase field which identifies the solid and liquid phases is solved by the least-squares finite element method, and the heat conduction equation for the temperature field is solved by the Galerkin finite element method. Without special treatments this method can handle complicated interfacial shapes and physical features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信