CHIMERA:一个0.92 TOPS, 2.2 TOPS/W Edge AI加速器,带有2 MByte片上代工厂电阻式RAM,用于高效的训练和推理

M. Giordano, Kartik Prabhu, Kalhan Koul, R. Radway, Albert Gural, Rohan Doshi, Zainab F. Khan, John W. Kustin, Timothy Liu, Gregorio B. Lopes, Victor Turbiner, W. Khwa, Y. Chih, Meng-Fan Chang, Guénolé Lallement, B. Murmann, S. Mitra, Priyanka Raina
{"title":"CHIMERA:一个0.92 TOPS, 2.2 TOPS/W Edge AI加速器,带有2 MByte片上代工厂电阻式RAM,用于高效的训练和推理","authors":"M. Giordano, Kartik Prabhu, Kalhan Koul, R. Radway, Albert Gural, Rohan Doshi, Zainab F. Khan, John W. Kustin, Timothy Liu, Gregorio B. Lopes, Victor Turbiner, W. Khwa, Y. Chih, Meng-Fan Chang, Guénolé Lallement, B. Murmann, S. Mitra, Priyanka Raina","doi":"10.23919/VLSICircuits52068.2021.9492347","DOIUrl":null,"url":null,"abstract":"CHIMERA is the first non-volatile deep neural network (DNN) chip for edge AI training and inference using foundry on-chip resistive RAM (RRAM) macros and no off-chip memory. CHIMERA achieves 0.92 TOPS peak performance and 2.2 TOPS/W. We scale inference to 6x larger DNNs by connecting 6 CHIMERAs with just 4% execution time and 5% energy costs, enabled by communication-sparse DNN mappings that exploit RRAM non-volatility through quick chip wakeup/shutdown (33 µs). We demonstrate the first incremental edge AI training which overcomes RRAM write energy, speed, and endurance challenges. Our training achieves the same accuracy as traditional algorithms with up to 283x fewer RRAM weight update steps and 340x better energy-delay product. We thus demonstrate 10 years of 20 samples/minute incremental edge AI training on CHIMERA.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator with 2 MByte On-Chip Foundry Resistive RAM for Efficient Training and Inference\",\"authors\":\"M. Giordano, Kartik Prabhu, Kalhan Koul, R. Radway, Albert Gural, Rohan Doshi, Zainab F. Khan, John W. Kustin, Timothy Liu, Gregorio B. Lopes, Victor Turbiner, W. Khwa, Y. Chih, Meng-Fan Chang, Guénolé Lallement, B. Murmann, S. Mitra, Priyanka Raina\",\"doi\":\"10.23919/VLSICircuits52068.2021.9492347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"CHIMERA is the first non-volatile deep neural network (DNN) chip for edge AI training and inference using foundry on-chip resistive RAM (RRAM) macros and no off-chip memory. CHIMERA achieves 0.92 TOPS peak performance and 2.2 TOPS/W. We scale inference to 6x larger DNNs by connecting 6 CHIMERAs with just 4% execution time and 5% energy costs, enabled by communication-sparse DNN mappings that exploit RRAM non-volatility through quick chip wakeup/shutdown (33 µs). We demonstrate the first incremental edge AI training which overcomes RRAM write energy, speed, and endurance challenges. Our training achieves the same accuracy as traditional algorithms with up to 283x fewer RRAM weight update steps and 340x better energy-delay product. We thus demonstrate 10 years of 20 samples/minute incremental edge AI training on CHIMERA.\",\"PeriodicalId\":106356,\"journal\":{\"name\":\"2021 Symposium on VLSI Circuits\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSICircuits52068.2021.9492347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

CHIMERA是第一款非易失性深度神经网络(DNN)芯片,用于边缘人工智能训练和推理,采用代工片上电阻性RAM (RRAM)宏,无片外内存。CHIMERA达到0.92 TOPS峰值性能和2.2 TOPS/W。我们通过连接6个chimera,将推理扩展到6倍大的DNN,仅需要4%的执行时间和5%的能源成本,通过通信稀疏DNN映射,通过快速芯片唤醒/关闭(33µs)利用RRAM非易失性。我们展示了第一个增量边缘AI训练,克服了RRAM写入能量,速度和耐力挑战。我们的训练达到了与传统算法相同的精度,RRAM权重更新步骤减少了283倍,能量延迟产品提高了340倍。因此,我们在CHIMERA上展示了10年20个样本/分钟的增量边缘人工智能训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CHIMERA: A 0.92 TOPS, 2.2 TOPS/W Edge AI Accelerator with 2 MByte On-Chip Foundry Resistive RAM for Efficient Training and Inference
CHIMERA is the first non-volatile deep neural network (DNN) chip for edge AI training and inference using foundry on-chip resistive RAM (RRAM) macros and no off-chip memory. CHIMERA achieves 0.92 TOPS peak performance and 2.2 TOPS/W. We scale inference to 6x larger DNNs by connecting 6 CHIMERAs with just 4% execution time and 5% energy costs, enabled by communication-sparse DNN mappings that exploit RRAM non-volatility through quick chip wakeup/shutdown (33 µs). We demonstrate the first incremental edge AI training which overcomes RRAM write energy, speed, and endurance challenges. Our training achieves the same accuracy as traditional algorithms with up to 283x fewer RRAM weight update steps and 340x better energy-delay product. We thus demonstrate 10 years of 20 samples/minute incremental edge AI training on CHIMERA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信