DWN中基于模式的谱聚类方法研究

Mehdi Sadeghi-Moghadam, Hamideh Haghparast, Seyed Abdolhamed Hoseinpour
{"title":"DWN中基于模式的谱聚类方法研究","authors":"Mehdi Sadeghi-Moghadam, Hamideh Haghparast, Seyed Abdolhamed Hoseinpour","doi":"10.1109/MICAI-2016.2016.00019","DOIUrl":null,"url":null,"abstract":"Pattern based spectral clustering methods in directed weighted network (DWN) have significant applications in many domains, including computer engineering, E-commerce and economics. In this paper, we compile several of the state of the art algorithms from the point of view of clustering quality over some existing benchmark datasets. Experimental results show that, it is necessary to propose a more common pattern based spectral clustering method in DWN.","PeriodicalId":405503,"journal":{"name":"2016 Fifteenth Mexican International Conference on Artificial Intelligence (MICAI)","volume":"38 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on Pattern-Based Spectral Clustering Methods in DWN\",\"authors\":\"Mehdi Sadeghi-Moghadam, Hamideh Haghparast, Seyed Abdolhamed Hoseinpour\",\"doi\":\"10.1109/MICAI-2016.2016.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pattern based spectral clustering methods in directed weighted network (DWN) have significant applications in many domains, including computer engineering, E-commerce and economics. In this paper, we compile several of the state of the art algorithms from the point of view of clustering quality over some existing benchmark datasets. Experimental results show that, it is necessary to propose a more common pattern based spectral clustering method in DWN.\",\"PeriodicalId\":405503,\"journal\":{\"name\":\"2016 Fifteenth Mexican International Conference on Artificial Intelligence (MICAI)\",\"volume\":\"38 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fifteenth Mexican International Conference on Artificial Intelligence (MICAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MICAI-2016.2016.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fifteenth Mexican International Conference on Artificial Intelligence (MICAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MICAI-2016.2016.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有向加权网络(DWN)中基于模式的谱聚类方法在计算机工程、电子商务和经济等领域有着重要的应用。在本文中,我们从一些现有基准数据集的聚类质量的角度编译了几种最先进的算法。实验结果表明,有必要提出一种更通用的基于模式的DWN光谱聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study on Pattern-Based Spectral Clustering Methods in DWN
Pattern based spectral clustering methods in directed weighted network (DWN) have significant applications in many domains, including computer engineering, E-commerce and economics. In this paper, we compile several of the state of the art algorithms from the point of view of clustering quality over some existing benchmark datasets. Experimental results show that, it is necessary to propose a more common pattern based spectral clustering method in DWN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信