机器学习的质量保证——一种功能和系统保障的方法

Alexander Poth, Burkhard Meyer, Peter Schlicht, A. Riel
{"title":"机器学习的质量保证——一种功能和系统保障的方法","authors":"Alexander Poth, Burkhard Meyer, Peter Schlicht, A. Riel","doi":"10.1109/QRS51102.2020.00016","DOIUrl":null,"url":null,"abstract":"In an industrial context, high software quality is mandatory in order to avoid costly patching. We present a state of the art analysis of approaches to ensure that a specific Artificial Intelligence (AI) model is ready for release. We analyze the requirements a Machine Learning (ML) system has to fulfill in order to comply with the needs of an automotive OEM. The main implication for projects relying on ML is a holistic assessment of possible quality risks. These risks may stem from implemented ML models and spread into the delivery. We present a methodological quality assurance (QA) approach and its evaluation.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"29 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Quality Assurance for Machine Learning – an approach to function and system safeguarding\",\"authors\":\"Alexander Poth, Burkhard Meyer, Peter Schlicht, A. Riel\",\"doi\":\"10.1109/QRS51102.2020.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In an industrial context, high software quality is mandatory in order to avoid costly patching. We present a state of the art analysis of approaches to ensure that a specific Artificial Intelligence (AI) model is ready for release. We analyze the requirements a Machine Learning (ML) system has to fulfill in order to comply with the needs of an automotive OEM. The main implication for projects relying on ML is a holistic assessment of possible quality risks. These risks may stem from implemented ML models and spread into the delivery. We present a methodological quality assurance (QA) approach and its evaluation.\",\"PeriodicalId\":301814,\"journal\":{\"name\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"volume\":\"29 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS51102.2020.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在工业环境中,为了避免昂贵的补丁,高软件质量是强制性的。我们提出了一种最先进的方法分析,以确保特定的人工智能(AI)模型准备发布。我们分析了机器学习(ML)系统必须满足的要求,以满足汽车OEM的需求。依赖ML的项目的主要含义是对可能的质量风险进行全面评估。这些风险可能源于实现的ML模型,并扩散到交付中。我们提出了一种方法学的质量保证(QA)方法及其评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quality Assurance for Machine Learning – an approach to function and system safeguarding
In an industrial context, high software quality is mandatory in order to avoid costly patching. We present a state of the art analysis of approaches to ensure that a specific Artificial Intelligence (AI) model is ready for release. We analyze the requirements a Machine Learning (ML) system has to fulfill in order to comply with the needs of an automotive OEM. The main implication for projects relying on ML is a holistic assessment of possible quality risks. These risks may stem from implemented ML models and spread into the delivery. We present a methodological quality assurance (QA) approach and its evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信