大数据快速并行约束Viterbi算法及其在金融时间序列中的应用

Imad Sassi, S. Anter, A. Bekkhoucha
{"title":"大数据快速并行约束Viterbi算法及其在金融时间序列中的应用","authors":"Imad Sassi, S. Anter, A. Bekkhoucha","doi":"10.1145/3467691.3467697","DOIUrl":null,"url":null,"abstract":"A new fast parallel constrained Viterbi algorithm for big data is proposed in this paper. We provide a detailed analysis of its performance on big data frameworks. This performance analysis includes the evaluation of execution time, speedup, and prediction accuracy. Additionally, we compare the impact of the proposed approach on the performance of our parallel constrained algorithm with other benchmark versions. We use synthetic data and real-world data in our experiments to describe the behavior of our algorithm for different data sizes and different numbers of nodes. We demonstrate that this algorithm is fast, highly efficient, and scalable when it runs on spark framework and its prediction quality is acceptable since there is no deterioration or reduction observed.","PeriodicalId":159222,"journal":{"name":"Proceedings of the 2021 4th International Conference on Robot Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Parallel Constrained Viterbi Algorithm for Big Data with Applications to Financial Time Series\",\"authors\":\"Imad Sassi, S. Anter, A. Bekkhoucha\",\"doi\":\"10.1145/3467691.3467697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new fast parallel constrained Viterbi algorithm for big data is proposed in this paper. We provide a detailed analysis of its performance on big data frameworks. This performance analysis includes the evaluation of execution time, speedup, and prediction accuracy. Additionally, we compare the impact of the proposed approach on the performance of our parallel constrained algorithm with other benchmark versions. We use synthetic data and real-world data in our experiments to describe the behavior of our algorithm for different data sizes and different numbers of nodes. We demonstrate that this algorithm is fast, highly efficient, and scalable when it runs on spark framework and its prediction quality is acceptable since there is no deterioration or reduction observed.\",\"PeriodicalId\":159222,\"journal\":{\"name\":\"Proceedings of the 2021 4th International Conference on Robot Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 4th International Conference on Robot Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3467691.3467697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 4th International Conference on Robot Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3467691.3467697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的大数据并行约束Viterbi算法。我们对其在大数据框架上的性能进行了详细的分析。此性能分析包括对执行时间、加速和预测准确性的评估。此外,我们比较了所提出的方法对我们的并行约束算法的性能与其他基准版本的影响。我们在实验中使用合成数据和真实数据来描述我们的算法在不同数据大小和不同节点数量下的行为。我们证明了该算法在spark框架上运行时具有快速,高效和可扩展性,并且由于没有观察到恶化或减少,其预测质量是可接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Parallel Constrained Viterbi Algorithm for Big Data with Applications to Financial Time Series
A new fast parallel constrained Viterbi algorithm for big data is proposed in this paper. We provide a detailed analysis of its performance on big data frameworks. This performance analysis includes the evaluation of execution time, speedup, and prediction accuracy. Additionally, we compare the impact of the proposed approach on the performance of our parallel constrained algorithm with other benchmark versions. We use synthetic data and real-world data in our experiments to describe the behavior of our algorithm for different data sizes and different numbers of nodes. We demonstrate that this algorithm is fast, highly efficient, and scalable when it runs on spark framework and its prediction quality is acceptable since there is no deterioration or reduction observed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信