{"title":"大数据快速并行约束Viterbi算法及其在金融时间序列中的应用","authors":"Imad Sassi, S. Anter, A. Bekkhoucha","doi":"10.1145/3467691.3467697","DOIUrl":null,"url":null,"abstract":"A new fast parallel constrained Viterbi algorithm for big data is proposed in this paper. We provide a detailed analysis of its performance on big data frameworks. This performance analysis includes the evaluation of execution time, speedup, and prediction accuracy. Additionally, we compare the impact of the proposed approach on the performance of our parallel constrained algorithm with other benchmark versions. We use synthetic data and real-world data in our experiments to describe the behavior of our algorithm for different data sizes and different numbers of nodes. We demonstrate that this algorithm is fast, highly efficient, and scalable when it runs on spark framework and its prediction quality is acceptable since there is no deterioration or reduction observed.","PeriodicalId":159222,"journal":{"name":"Proceedings of the 2021 4th International Conference on Robot Systems and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Parallel Constrained Viterbi Algorithm for Big Data with Applications to Financial Time Series\",\"authors\":\"Imad Sassi, S. Anter, A. Bekkhoucha\",\"doi\":\"10.1145/3467691.3467697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new fast parallel constrained Viterbi algorithm for big data is proposed in this paper. We provide a detailed analysis of its performance on big data frameworks. This performance analysis includes the evaluation of execution time, speedup, and prediction accuracy. Additionally, we compare the impact of the proposed approach on the performance of our parallel constrained algorithm with other benchmark versions. We use synthetic data and real-world data in our experiments to describe the behavior of our algorithm for different data sizes and different numbers of nodes. We demonstrate that this algorithm is fast, highly efficient, and scalable when it runs on spark framework and its prediction quality is acceptable since there is no deterioration or reduction observed.\",\"PeriodicalId\":159222,\"journal\":{\"name\":\"Proceedings of the 2021 4th International Conference on Robot Systems and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 4th International Conference on Robot Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3467691.3467697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 4th International Conference on Robot Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3467691.3467697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Parallel Constrained Viterbi Algorithm for Big Data with Applications to Financial Time Series
A new fast parallel constrained Viterbi algorithm for big data is proposed in this paper. We provide a detailed analysis of its performance on big data frameworks. This performance analysis includes the evaluation of execution time, speedup, and prediction accuracy. Additionally, we compare the impact of the proposed approach on the performance of our parallel constrained algorithm with other benchmark versions. We use synthetic data and real-world data in our experiments to describe the behavior of our algorithm for different data sizes and different numbers of nodes. We demonstrate that this algorithm is fast, highly efficient, and scalable when it runs on spark framework and its prediction quality is acceptable since there is no deterioration or reduction observed.