弱光图像增强中的导数特征和剩余空间注意

Qihan Li, S. Kamata
{"title":"弱光图像增强中的导数特征和剩余空间注意","authors":"Qihan Li, S. Kamata","doi":"10.1117/12.2631553","DOIUrl":null,"url":null,"abstract":"Images taken in low-light conditions often have the problem of poor visibility. Besides inadequate lightings, different types of image quality degradation, such as a large amount of noise and color loss due to the limited quality of cameras and camera ISO setting, cause low quality of the captured image. However, directly amplifying the darkness of the lowlight image will inescapably bring into the pollution of the image. Therefore, the task of low-light image enhancement needs to kindle the dark regions and remove image degradation. To achieve this task, our work builds a Retinex theorybased neural network, which decomposes the input images into an illumination map and a reflectance map. Illumination map, representing the light information, is used for brightness adjustment, while reflectance map, representing the color information, is responsible for reconstructing low-light image into enhanced image with adjusted illumination map. However, there are few studies that notice the derivative of the image is used to solve the noise problem in Retinex decomposition and use spatial attention-based residual structures to increase the effect of light enhancement. For Decomposition sub-Network (Decom-Net), we purpose derivative features to alleviate the occurrence of noise in the reflectance map in the process of low-light image decomposition. For Illumination Enhancement sub-Network (Relight- Net), we use the Gaussian blur for reducing the problem of brightness enhancement degradation and build the Residual Spatial Attention Block (RSAB) to enlarge the volume and increase the capability of pixel-to-pixel mapping. Experiments are implemented to shows the effectiveness of our network, which improves the performance of previous methods on a large scale.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"55 7-8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Derivative feature and residual spatial attention for low-light image enhancement\",\"authors\":\"Qihan Li, S. Kamata\",\"doi\":\"10.1117/12.2631553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Images taken in low-light conditions often have the problem of poor visibility. Besides inadequate lightings, different types of image quality degradation, such as a large amount of noise and color loss due to the limited quality of cameras and camera ISO setting, cause low quality of the captured image. However, directly amplifying the darkness of the lowlight image will inescapably bring into the pollution of the image. Therefore, the task of low-light image enhancement needs to kindle the dark regions and remove image degradation. To achieve this task, our work builds a Retinex theorybased neural network, which decomposes the input images into an illumination map and a reflectance map. Illumination map, representing the light information, is used for brightness adjustment, while reflectance map, representing the color information, is responsible for reconstructing low-light image into enhanced image with adjusted illumination map. However, there are few studies that notice the derivative of the image is used to solve the noise problem in Retinex decomposition and use spatial attention-based residual structures to increase the effect of light enhancement. For Decomposition sub-Network (Decom-Net), we purpose derivative features to alleviate the occurrence of noise in the reflectance map in the process of low-light image decomposition. For Illumination Enhancement sub-Network (Relight- Net), we use the Gaussian blur for reducing the problem of brightness enhancement degradation and build the Residual Spatial Attention Block (RSAB) to enlarge the volume and increase the capability of pixel-to-pixel mapping. Experiments are implemented to shows the effectiveness of our network, which improves the performance of previous methods on a large scale.\",\"PeriodicalId\":415097,\"journal\":{\"name\":\"International Conference on Signal Processing Systems\",\"volume\":\"55 7-8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Signal Processing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2631553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2631553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在弱光条件下拍摄的图像通常存在能见度差的问题。除了光线不足之外,不同类型的图像质量下降,例如由于相机质量和相机ISO设置的限制而产生的大量噪声和色彩损失,导致捕获的图像质量较低。但是,直接放大弱光图像的暗度,不可避免地会给图像带来污染。因此,弱光图像增强的任务需要点燃暗区,消除图像退化。为了完成这项任务,我们的工作建立了一个基于Retinex理论的神经网络,该网络将输入图像分解为照明图和反射率图。照明图表示光照信息,用于亮度调整,反射率图表示颜色信息,负责将低光照图像重构为经过调整的光照图后的增强图像。然而,很少有研究注意到利用图像的导数来解决Retinex分解中的噪声问题,并利用基于空间注意力的残差结构来增加光增强效果。对于分解子网络(decomnet),我们利用导数特征来缓解弱光图像分解过程中反射率图中噪声的出现。对于照明增强子网络(Relight- Net),我们使用高斯模糊来减少亮度增强退化问题,并构建剩余空间注意块(RSAB)来扩大体积并提高像素到像素的映射能力。实验结果表明,该网络的有效性大大提高了以往方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derivative feature and residual spatial attention for low-light image enhancement
Images taken in low-light conditions often have the problem of poor visibility. Besides inadequate lightings, different types of image quality degradation, such as a large amount of noise and color loss due to the limited quality of cameras and camera ISO setting, cause low quality of the captured image. However, directly amplifying the darkness of the lowlight image will inescapably bring into the pollution of the image. Therefore, the task of low-light image enhancement needs to kindle the dark regions and remove image degradation. To achieve this task, our work builds a Retinex theorybased neural network, which decomposes the input images into an illumination map and a reflectance map. Illumination map, representing the light information, is used for brightness adjustment, while reflectance map, representing the color information, is responsible for reconstructing low-light image into enhanced image with adjusted illumination map. However, there are few studies that notice the derivative of the image is used to solve the noise problem in Retinex decomposition and use spatial attention-based residual structures to increase the effect of light enhancement. For Decomposition sub-Network (Decom-Net), we purpose derivative features to alleviate the occurrence of noise in the reflectance map in the process of low-light image decomposition. For Illumination Enhancement sub-Network (Relight- Net), we use the Gaussian blur for reducing the problem of brightness enhancement degradation and build the Residual Spatial Attention Block (RSAB) to enlarge the volume and increase the capability of pixel-to-pixel mapping. Experiments are implemented to shows the effectiveness of our network, which improves the performance of previous methods on a large scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信