{"title":"为NLP分析准备法律文件:利用页面特征改进文本元素的分类","authors":"Frieda Josi, Christian Wartena, U. Heid","doi":"10.5121/csit.2022.120102","DOIUrl":null,"url":null,"abstract":"Legal documents often have a complex layout with many different headings, headers and footers, side notes, etc. For the further processing, it is important to extract these individual components correctly from a legally binding document, for example a signed PDF. A common approach to do so is to classify each (text) region of a page using its geometric and textual features. This approach works well, when the training and test data have a similar structure and when the documents of a collection to be analyzed have a rather uniform layout. We show that the use of global page properties can improve the accuracy of text element classification: we first classify each page into one of three layout types. After that, we can train a classifier for each of the three page types and thereby improve the accuracy on a manually annotated collection of 70 legal documents consisting of 20,938 text elements. When we split by page type, we achieve an improvement from 0.95 to 0.98 for single-column pages with left marginalia and from 0.95 to 0.96 for double-column pages. We developed our own feature-based method for page layout detection, which we benchmark against a standard implementation of a CNN image classifier.","PeriodicalId":189285,"journal":{"name":"Natural Language Processing (NLP) Trends","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Preparing Legal Documents for NLP Analysis: Improving the Classification of Text Elements by Using Page Features\",\"authors\":\"Frieda Josi, Christian Wartena, U. Heid\",\"doi\":\"10.5121/csit.2022.120102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Legal documents often have a complex layout with many different headings, headers and footers, side notes, etc. For the further processing, it is important to extract these individual components correctly from a legally binding document, for example a signed PDF. A common approach to do so is to classify each (text) region of a page using its geometric and textual features. This approach works well, when the training and test data have a similar structure and when the documents of a collection to be analyzed have a rather uniform layout. We show that the use of global page properties can improve the accuracy of text element classification: we first classify each page into one of three layout types. After that, we can train a classifier for each of the three page types and thereby improve the accuracy on a manually annotated collection of 70 legal documents consisting of 20,938 text elements. When we split by page type, we achieve an improvement from 0.95 to 0.98 for single-column pages with left marginalia and from 0.95 to 0.96 for double-column pages. We developed our own feature-based method for page layout detection, which we benchmark against a standard implementation of a CNN image classifier.\",\"PeriodicalId\":189285,\"journal\":{\"name\":\"Natural Language Processing (NLP) Trends\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing (NLP) Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.120102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing (NLP) Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparing Legal Documents for NLP Analysis: Improving the Classification of Text Elements by Using Page Features
Legal documents often have a complex layout with many different headings, headers and footers, side notes, etc. For the further processing, it is important to extract these individual components correctly from a legally binding document, for example a signed PDF. A common approach to do so is to classify each (text) region of a page using its geometric and textual features. This approach works well, when the training and test data have a similar structure and when the documents of a collection to be analyzed have a rather uniform layout. We show that the use of global page properties can improve the accuracy of text element classification: we first classify each page into one of three layout types. After that, we can train a classifier for each of the three page types and thereby improve the accuracy on a manually annotated collection of 70 legal documents consisting of 20,938 text elements. When we split by page type, we achieve an improvement from 0.95 to 0.98 for single-column pages with left marginalia and from 0.95 to 0.96 for double-column pages. We developed our own feature-based method for page layout detection, which we benchmark against a standard implementation of a CNN image classifier.