基于径向基函数算法和系数相关的图像检索系统精度分析

Khairul Abdi Sinuraya, S. Suwilo, M. S. Lydia
{"title":"基于径向基函数算法和系数相关的图像检索系统精度分析","authors":"Khairul Abdi Sinuraya, S. Suwilo, M. S. Lydia","doi":"10.1109/DATABIA50434.2020.9190227","DOIUrl":null,"url":null,"abstract":"The image retrieval system is a system used for the process of retrieval of images based on information contained in the image files. Radial Basis Function (RBF) is one of the Neural Network methods used in the image retrieval system, is known for the capability to produce image information search properly. In determining the initial centroid value, the RBF method uses K-Means Clustering. This algorithm has a weakness in determining the right initial centroid value to get proper classification results in image retrieval. In this paper, the Coefficient Correlation (CC) method is used in determining the initial centroid value of the input data following the similarity of the data. Data with the highest degree of similarity compared to other data used as the initial centroid value. Data used in this study are leaf image data of 500 images with 10 categories of leaf types, and each sample contained 50 images. Based on the testing results, an increase in image retrieval accuracy with an average of 90.92% using the RBF and CC methods compared the image retrieval results using the RBF and K-Means Clustering methods gained an average accuracy of 85.96%.","PeriodicalId":165106,"journal":{"name":"2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accuracy Analysis on Images Retrieval System using Radial Basis Function Algorithm and Coefficient Correlation\",\"authors\":\"Khairul Abdi Sinuraya, S. Suwilo, M. S. Lydia\",\"doi\":\"10.1109/DATABIA50434.2020.9190227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The image retrieval system is a system used for the process of retrieval of images based on information contained in the image files. Radial Basis Function (RBF) is one of the Neural Network methods used in the image retrieval system, is known for the capability to produce image information search properly. In determining the initial centroid value, the RBF method uses K-Means Clustering. This algorithm has a weakness in determining the right initial centroid value to get proper classification results in image retrieval. In this paper, the Coefficient Correlation (CC) method is used in determining the initial centroid value of the input data following the similarity of the data. Data with the highest degree of similarity compared to other data used as the initial centroid value. Data used in this study are leaf image data of 500 images with 10 categories of leaf types, and each sample contained 50 images. Based on the testing results, an increase in image retrieval accuracy with an average of 90.92% using the RBF and CC methods compared the image retrieval results using the RBF and K-Means Clustering methods gained an average accuracy of 85.96%.\",\"PeriodicalId\":165106,\"journal\":{\"name\":\"2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATABIA50434.2020.9190227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Science, Artificial Intelligence, and Business Analytics (DATABIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATABIA50434.2020.9190227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像检索系统是一种基于图像文件中包含的信息进行图像检索的系统。径向基函数(RBF)是一种应用于图像检索系统的神经网络方法,以其产生图像信息的能力而闻名。在确定初始质心值时,RBF方法使用K-Means聚类。在图像检索中,该算法在确定合适的初始质心值以获得合适的分类结果方面存在不足。本文采用相关系数法(Coefficient Correlation, CC)根据数据的相似度确定输入数据的初始质心值。与其他数据相比,具有最高相似度的数据用作初始质心值。本研究使用的数据是500幅图像的叶片图像数据,分为10类叶片类型,每个样本包含50幅图像。测试结果表明,与RBF和K-Means聚类方法的图像检索结果相比,RBF和CC方法的图像检索准确率平均提高了90.92%,平均准确率为85.96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accuracy Analysis on Images Retrieval System using Radial Basis Function Algorithm and Coefficient Correlation
The image retrieval system is a system used for the process of retrieval of images based on information contained in the image files. Radial Basis Function (RBF) is one of the Neural Network methods used in the image retrieval system, is known for the capability to produce image information search properly. In determining the initial centroid value, the RBF method uses K-Means Clustering. This algorithm has a weakness in determining the right initial centroid value to get proper classification results in image retrieval. In this paper, the Coefficient Correlation (CC) method is used in determining the initial centroid value of the input data following the similarity of the data. Data with the highest degree of similarity compared to other data used as the initial centroid value. Data used in this study are leaf image data of 500 images with 10 categories of leaf types, and each sample contained 50 images. Based on the testing results, an increase in image retrieval accuracy with an average of 90.92% using the RBF and CC methods compared the image retrieval results using the RBF and K-Means Clustering methods gained an average accuracy of 85.96%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信