{"title":"时空脑电准备电位的神经网络分类","authors":"A. Barreto, A. Taberner, L.M. Vicente","doi":"10.1109/SBEC.1996.493116","DOIUrl":null,"url":null,"abstract":"The detection of spatio-temporal scalp EEG patterns associated with voluntary motion preparation towards the development of a brain-computer interface (BCI) is explored. The rationale for the use of a spatio-temporal approach to this detection problem is explained. The need for a temporal or dynamic classifier is confirmed by demonstration of the lack of robustness in static neural network classifiers with respect to time alignment of the patterns under analysis. The results from dynamic classifiers, such as the Time Delay Neural Network (TDNN) and the Gamma Neural Network are presented in terms of their Receiver Operating Characteristic (ROC) Curves.","PeriodicalId":294120,"journal":{"name":"Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Neural network classification of spatio-temporal EEG readiness potentials\",\"authors\":\"A. Barreto, A. Taberner, L.M. Vicente\",\"doi\":\"10.1109/SBEC.1996.493116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of spatio-temporal scalp EEG patterns associated with voluntary motion preparation towards the development of a brain-computer interface (BCI) is explored. The rationale for the use of a spatio-temporal approach to this detection problem is explained. The need for a temporal or dynamic classifier is confirmed by demonstration of the lack of robustness in static neural network classifiers with respect to time alignment of the patterns under analysis. The results from dynamic classifiers, such as the Time Delay Neural Network (TDNN) and the Gamma Neural Network are presented in terms of their Receiver Operating Characteristic (ROC) Curves.\",\"PeriodicalId\":294120,\"journal\":{\"name\":\"Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBEC.1996.493116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBEC.1996.493116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural network classification of spatio-temporal EEG readiness potentials
The detection of spatio-temporal scalp EEG patterns associated with voluntary motion preparation towards the development of a brain-computer interface (BCI) is explored. The rationale for the use of a spatio-temporal approach to this detection problem is explained. The need for a temporal or dynamic classifier is confirmed by demonstration of the lack of robustness in static neural network classifiers with respect to time alignment of the patterns under analysis. The results from dynamic classifiers, such as the Time Delay Neural Network (TDNN) and the Gamma Neural Network are presented in terms of their Receiver Operating Characteristic (ROC) Curves.