移动距离传感器形状数据的采集与校正

A. Banno, K. Ikeuchi
{"title":"移动距离传感器形状数据的采集与校正","authors":"A. Banno, K. Ikeuchi","doi":"10.2197/IPSJDC.3.424","DOIUrl":null,"url":null,"abstract":"“Modeling from Reality” techniques are making great progress because of the availability of accurate geometric data from three-dimensional digitizers. These techniques contribute to numerous applications in many areas. Among them, one of the most important and comprehensive applications is modeling cultural heritage objects. For a large object, scanning from the air is one of the most efficient methods for obtaining 3D data. We developed a novel 3D measurement system, the Floating Laser Range Sensor (FLRS), in which a range sensor is suspended beneath a balloon. The obtained data, however, have some distortions due to movement of the system during the scanning process. We propose two novel methods to rectify the shape data obtained by the moving range sensor. One method rectifies the data by using image sequences; the other rectifies the data without images. To test these methods, we have conducted a digital archiving project of a large-scale heritage object, in which our algorithms are applied. The results show the effectiveness of our methods. Moreover, both methods are applicable not only to our FLRS, but also to moving range sensors in general.","PeriodicalId":432390,"journal":{"name":"Ipsj Digital Courier","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Acquisition and Rectification of Shape Data Obtained by a Moving Range Sensor\",\"authors\":\"A. Banno, K. Ikeuchi\",\"doi\":\"10.2197/IPSJDC.3.424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"“Modeling from Reality” techniques are making great progress because of the availability of accurate geometric data from three-dimensional digitizers. These techniques contribute to numerous applications in many areas. Among them, one of the most important and comprehensive applications is modeling cultural heritage objects. For a large object, scanning from the air is one of the most efficient methods for obtaining 3D data. We developed a novel 3D measurement system, the Floating Laser Range Sensor (FLRS), in which a range sensor is suspended beneath a balloon. The obtained data, however, have some distortions due to movement of the system during the scanning process. We propose two novel methods to rectify the shape data obtained by the moving range sensor. One method rectifies the data by using image sequences; the other rectifies the data without images. To test these methods, we have conducted a digital archiving project of a large-scale heritage object, in which our algorithms are applied. The results show the effectiveness of our methods. Moreover, both methods are applicable not only to our FLRS, but also to moving range sensors in general.\",\"PeriodicalId\":432390,\"journal\":{\"name\":\"Ipsj Digital Courier\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ipsj Digital Courier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2197/IPSJDC.3.424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ipsj Digital Courier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2197/IPSJDC.3.424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于三维数字化设备提供了精确的几何数据,“现实建模”技术正在取得巨大进展。这些技术在许多领域都有广泛的应用。其中,最重要和最全面的应用之一是对文物的建模。对于大型物体,空中扫描是获取三维数据最有效的方法之一。我们开发了一种新颖的3D测量系统,浮动激光测距传感器(FLRS),其中测距传感器悬浮在气球下方。然而,由于系统在扫描过程中的运动,所获得的数据有一些畸变。我们提出了两种新的方法来校正由移动距离传感器获得的形状数据。一种方法是利用图像序列对数据进行校正;另一种是在没有图像的情况下对数据进行校正。为了测试这些方法,我们对一个大型文物进行了数字存档项目,并应用了我们的算法。结果表明了方法的有效性。此外,这两种方法不仅适用于我们的FLRS,也适用于一般的移动距离传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acquisition and Rectification of Shape Data Obtained by a Moving Range Sensor
“Modeling from Reality” techniques are making great progress because of the availability of accurate geometric data from three-dimensional digitizers. These techniques contribute to numerous applications in many areas. Among them, one of the most important and comprehensive applications is modeling cultural heritage objects. For a large object, scanning from the air is one of the most efficient methods for obtaining 3D data. We developed a novel 3D measurement system, the Floating Laser Range Sensor (FLRS), in which a range sensor is suspended beneath a balloon. The obtained data, however, have some distortions due to movement of the system during the scanning process. We propose two novel methods to rectify the shape data obtained by the moving range sensor. One method rectifies the data by using image sequences; the other rectifies the data without images. To test these methods, we have conducted a digital archiving project of a large-scale heritage object, in which our algorithms are applied. The results show the effectiveness of our methods. Moreover, both methods are applicable not only to our FLRS, but also to moving range sensors in general.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信