对BERT进行抗议事件提取的再训练

Tommaso Caselli, Osman Mutlu, A. Basile, Ali Hürriyetoǧlu
{"title":"对BERT进行抗议事件提取的再训练","authors":"Tommaso Caselli, Osman Mutlu, A. Basile, Ali Hürriyetoǧlu","doi":"10.18653/v1/2021.case-1.4","DOIUrl":null,"url":null,"abstract":"We analyze the effect of further retraining BERT with different domain specific data as an unsupervised domain adaptation strategy for event extraction. Portability of event extraction models is particularly challenging, with large performance drops affecting data on the same text genres (e.g., news). We present PROTEST-ER, a retrained BERT model for protest event extraction. PROTEST-ER outperforms a corresponding generic BERT on out-of-domain data of 8.1 points. Our best performing models reach 51.91-46.39 F1 across both domains.","PeriodicalId":330699,"journal":{"name":"Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PROTEST-ER: Retraining BERT for Protest Event Extraction\",\"authors\":\"Tommaso Caselli, Osman Mutlu, A. Basile, Ali Hürriyetoǧlu\",\"doi\":\"10.18653/v1/2021.case-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the effect of further retraining BERT with different domain specific data as an unsupervised domain adaptation strategy for event extraction. Portability of event extraction models is particularly challenging, with large performance drops affecting data on the same text genres (e.g., news). We present PROTEST-ER, a retrained BERT model for protest event extraction. PROTEST-ER outperforms a corresponding generic BERT on out-of-domain data of 8.1 points. Our best performing models reach 51.91-46.39 F1 across both domains.\",\"PeriodicalId\":330699,\"journal\":{\"name\":\"Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.case-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.case-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们分析了使用不同领域特定数据进一步再训练BERT作为事件提取的无监督领域自适应策略的效果。事件提取模型的可移植性尤其具有挑战性,在相同文本类型(例如,新闻)上影响数据的性能下降很大。我们提出了一种用于抗议事件提取的再训练BERT模型——protest - er。PROTEST-ER在域外数据上的表现优于相应的通用BERT,得分为8.1分。我们最好的模型在这两个领域达到51.91-46.39 F1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PROTEST-ER: Retraining BERT for Protest Event Extraction
We analyze the effect of further retraining BERT with different domain specific data as an unsupervised domain adaptation strategy for event extraction. Portability of event extraction models is particularly challenging, with large performance drops affecting data on the same text genres (e.g., news). We present PROTEST-ER, a retrained BERT model for protest event extraction. PROTEST-ER outperforms a corresponding generic BERT on out-of-domain data of 8.1 points. Our best performing models reach 51.91-46.39 F1 across both domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信