Tommaso Caselli, Osman Mutlu, A. Basile, Ali Hürriyetoǧlu
{"title":"对BERT进行抗议事件提取的再训练","authors":"Tommaso Caselli, Osman Mutlu, A. Basile, Ali Hürriyetoǧlu","doi":"10.18653/v1/2021.case-1.4","DOIUrl":null,"url":null,"abstract":"We analyze the effect of further retraining BERT with different domain specific data as an unsupervised domain adaptation strategy for event extraction. Portability of event extraction models is particularly challenging, with large performance drops affecting data on the same text genres (e.g., news). We present PROTEST-ER, a retrained BERT model for protest event extraction. PROTEST-ER outperforms a corresponding generic BERT on out-of-domain data of 8.1 points. Our best performing models reach 51.91-46.39 F1 across both domains.","PeriodicalId":330699,"journal":{"name":"Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"PROTEST-ER: Retraining BERT for Protest Event Extraction\",\"authors\":\"Tommaso Caselli, Osman Mutlu, A. Basile, Ali Hürriyetoǧlu\",\"doi\":\"10.18653/v1/2021.case-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the effect of further retraining BERT with different domain specific data as an unsupervised domain adaptation strategy for event extraction. Portability of event extraction models is particularly challenging, with large performance drops affecting data on the same text genres (e.g., news). We present PROTEST-ER, a retrained BERT model for protest event extraction. PROTEST-ER outperforms a corresponding generic BERT on out-of-domain data of 8.1 points. Our best performing models reach 51.91-46.39 F1 across both domains.\",\"PeriodicalId\":330699,\"journal\":{\"name\":\"Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.case-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.case-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PROTEST-ER: Retraining BERT for Protest Event Extraction
We analyze the effect of further retraining BERT with different domain specific data as an unsupervised domain adaptation strategy for event extraction. Portability of event extraction models is particularly challenging, with large performance drops affecting data on the same text genres (e.g., news). We present PROTEST-ER, a retrained BERT model for protest event extraction. PROTEST-ER outperforms a corresponding generic BERT on out-of-domain data of 8.1 points. Our best performing models reach 51.91-46.39 F1 across both domains.