DAMON:糖尿病管理的数据真实性监测系统

W. Young, J. Corbett, M. Gerber, S. Patek, Lu Feng
{"title":"DAMON:糖尿病管理的数据真实性监测系统","authors":"W. Young, J. Corbett, M. Gerber, S. Patek, Lu Feng","doi":"10.1109/IoTDI.2018.00013","DOIUrl":null,"url":null,"abstract":"We present DAMON, a data authenticity monitoring system for use in an Internet of Medical Things (IoMT) system assembled to treat Type 1 Diabetes (T1D). We describe the use of Signal Temporal Logic (STL) for specifying and monitoring a range of system properties relevant to T1D treatment, including constraints on glycemic variability and insulin delivery. We perform retrospective analysis of posterior probabilities of multiple meal hypotheses to detect suspicious meal events. Using a corpus of clinical study data, we provide experimental results demonstrating the detection of system events indicative of compromised data authenticity.","PeriodicalId":149725,"journal":{"name":"2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"225 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"DAMON: A Data Authenticity Monitoring System for Diabetes Management\",\"authors\":\"W. Young, J. Corbett, M. Gerber, S. Patek, Lu Feng\",\"doi\":\"10.1109/IoTDI.2018.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present DAMON, a data authenticity monitoring system for use in an Internet of Medical Things (IoMT) system assembled to treat Type 1 Diabetes (T1D). We describe the use of Signal Temporal Logic (STL) for specifying and monitoring a range of system properties relevant to T1D treatment, including constraints on glycemic variability and insulin delivery. We perform retrospective analysis of posterior probabilities of multiple meal hypotheses to detect suspicious meal events. Using a corpus of clinical study data, we provide experimental results demonstrating the detection of system events indicative of compromised data authenticity.\",\"PeriodicalId\":149725,\"journal\":{\"name\":\"2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"volume\":\"225 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IoTDI.2018.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Third International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTDI.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了DAMON,一个用于医疗物联网(IoMT)系统的数据真实性监测系统,用于治疗1型糖尿病(T1D)。我们描述了使用信号时间逻辑(STL)来指定和监测与T1D治疗相关的一系列系统特性,包括对血糖变异性和胰岛素输送的限制。我们对多个用餐假设的后验概率进行回顾性分析,以检测可疑用餐事件。使用临床研究数据的语料库,我们提供了实验结果,证明检测系统事件表明数据真实性受损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DAMON: A Data Authenticity Monitoring System for Diabetes Management
We present DAMON, a data authenticity monitoring system for use in an Internet of Medical Things (IoMT) system assembled to treat Type 1 Diabetes (T1D). We describe the use of Signal Temporal Logic (STL) for specifying and monitoring a range of system properties relevant to T1D treatment, including constraints on glycemic variability and insulin delivery. We perform retrospective analysis of posterior probabilities of multiple meal hypotheses to detect suspicious meal events. Using a corpus of clinical study data, we provide experimental results demonstrating the detection of system events indicative of compromised data authenticity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信