寻找共同点:选择、主张和假设

Alex Groce, Martin Erwig
{"title":"寻找共同点:选择、主张和假设","authors":"Alex Groce, Martin Erwig","doi":"10.1145/2338966.2336800","DOIUrl":null,"url":null,"abstract":"At present, the “testing community” is on good speaking terms, but typically lacks a common language for expressing some computational ideas, even in cases where such a language would be both useful and plausible. In particular, a large body of testing systems define a testing problem in the language of the system under test, extended with operations for choosing inputs, asserting properties, and constraining the domain of executions considered. While the underlying algorithms used for “testing” include symbolic execution, explicit-state model checking, machine learning, and “old fashioned” random testing, there seems to be a common core of expressive need. We propose that the dynamic analysis community could benefit from working with some common syntactic (and to some extent semantic) mechanisms for expressing a body of testing problems. Such a shared language would have immediate practical uses and make cross-tool comparisons and research into identifying appropriate tools for different testing activities easier. We also suspect that considering the more abstract testing problem arising from this minimalist common ground could serve as a basis for thinking about the design of usable embedded domain-specific languages for testing and might help identify computational patterns that have escaped the notice of the community.","PeriodicalId":315305,"journal":{"name":"International Workshop on Dynamic Analysis","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Finding common ground: choose, assert, and assume\",\"authors\":\"Alex Groce, Martin Erwig\",\"doi\":\"10.1145/2338966.2336800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the “testing community” is on good speaking terms, but typically lacks a common language for expressing some computational ideas, even in cases where such a language would be both useful and plausible. In particular, a large body of testing systems define a testing problem in the language of the system under test, extended with operations for choosing inputs, asserting properties, and constraining the domain of executions considered. While the underlying algorithms used for “testing” include symbolic execution, explicit-state model checking, machine learning, and “old fashioned” random testing, there seems to be a common core of expressive need. We propose that the dynamic analysis community could benefit from working with some common syntactic (and to some extent semantic) mechanisms for expressing a body of testing problems. Such a shared language would have immediate practical uses and make cross-tool comparisons and research into identifying appropriate tools for different testing activities easier. We also suspect that considering the more abstract testing problem arising from this minimalist common ground could serve as a basis for thinking about the design of usable embedded domain-specific languages for testing and might help identify computational patterns that have escaped the notice of the community.\",\"PeriodicalId\":315305,\"journal\":{\"name\":\"International Workshop on Dynamic Analysis\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Dynamic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2338966.2336800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Dynamic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2338966.2336800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

目前,“测试社区”处于良好的状态,但通常缺乏用于表达某些计算思想的通用语言,即使在这种语言既有用又合理的情况下也是如此。特别是,大量的测试系统用被测系统的语言定义了测试问题,扩展了选择输入、断言属性和约束所考虑的执行域的操作。虽然用于“测试”的底层算法包括符号执行、显式状态模型检查、机器学习和“老式”随机测试,但似乎有一个共同的表达需求核心。我们建议动态分析社区可以从使用一些通用的语法(以及某种程度上的语义)机制来表达一系列测试问题中获益。这样一种共享语言将具有直接的实际用途,并使跨工具比较和研究更容易为不同的测试活动确定适当的工具。我们还怀疑,考虑从这种极简的公共基础中产生的更抽象的测试问题,可以作为考虑设计可用的嵌入式领域特定于测试的语言的基础,并且可能有助于识别那些没有被社区注意到的计算模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding common ground: choose, assert, and assume
At present, the “testing community” is on good speaking terms, but typically lacks a common language for expressing some computational ideas, even in cases where such a language would be both useful and plausible. In particular, a large body of testing systems define a testing problem in the language of the system under test, extended with operations for choosing inputs, asserting properties, and constraining the domain of executions considered. While the underlying algorithms used for “testing” include symbolic execution, explicit-state model checking, machine learning, and “old fashioned” random testing, there seems to be a common core of expressive need. We propose that the dynamic analysis community could benefit from working with some common syntactic (and to some extent semantic) mechanisms for expressing a body of testing problems. Such a shared language would have immediate practical uses and make cross-tool comparisons and research into identifying appropriate tools for different testing activities easier. We also suspect that considering the more abstract testing problem arising from this minimalist common ground could serve as a basis for thinking about the design of usable embedded domain-specific languages for testing and might help identify computational patterns that have escaped the notice of the community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信