复指数神经网络的振荡模式

Lei Zhang
{"title":"复指数神经网络的振荡模式","authors":"Lei Zhang","doi":"10.1109/WI-IAT55865.2022.00069","DOIUrl":null,"url":null,"abstract":"The paper presents the design and evaluation of a complex exponential neural network model. The development of the model is inspired by the exponential form of general solutions to nonlinear differential equations that describe dynamical systems. The research goal is to develop a mathematical representation for neural oscillation and reduce the amount of computation in the neural network to improve computational efficiency. In particular, the weighted sum of two complex exponential neurons is evaluated to demonstrate that the difference of oscillation frequencies between the two neurons is the dominant parameter that determines the oscillation patterns of the neural network.","PeriodicalId":345445,"journal":{"name":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Oscillation Patterns of A Complex Exponential Neural Network\",\"authors\":\"Lei Zhang\",\"doi\":\"10.1109/WI-IAT55865.2022.00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents the design and evaluation of a complex exponential neural network model. The development of the model is inspired by the exponential form of general solutions to nonlinear differential equations that describe dynamical systems. The research goal is to develop a mathematical representation for neural oscillation and reduce the amount of computation in the neural network to improve computational efficiency. In particular, the weighted sum of two complex exponential neurons is evaluated to demonstrate that the difference of oscillation frequencies between the two neurons is the dominant parameter that determines the oscillation patterns of the neural network.\",\"PeriodicalId\":345445,\"journal\":{\"name\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI-IAT55865.2022.00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT55865.2022.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一个复指数神经网络模型的设计与评价。该模型的发展受到描述动力系统的非线性微分方程一般解的指数形式的启发。研究目标是建立神经振荡的数学表示,减少神经网络的计算量,提高计算效率。特别是,对两个复指数神经元的加权和进行了评估,以证明两个神经元之间的振荡频率差是决定神经网络振荡模式的主要参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Oscillation Patterns of A Complex Exponential Neural Network
The paper presents the design and evaluation of a complex exponential neural network model. The development of the model is inspired by the exponential form of general solutions to nonlinear differential equations that describe dynamical systems. The research goal is to develop a mathematical representation for neural oscillation and reduce the amount of computation in the neural network to improve computational efficiency. In particular, the weighted sum of two complex exponential neurons is evaluated to demonstrate that the difference of oscillation frequencies between the two neurons is the dominant parameter that determines the oscillation patterns of the neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信