{"title":"基于卷积密集神经网络的呼吸量测量变量FVC持续发声预测","authors":"Shivani Yadav, D. Gope, U. Krishnaswamy, P. Ghosh","doi":"10.1109/mlsp52302.2021.9596159","DOIUrl":null,"url":null,"abstract":"Spirometry is a lung function test used to diagnose and monitor lung diseases like asthma, pneumonia, chronic obstructive pulmonary disease, etc. Spirometry measures forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1), and their ratio to determine lung health. Spirometry is very time-consuming, strenuous, and requires proper training. Alternate methods based on voice for diagnosis and monitoring of lung health are promising because they are faster, easy to do, and require minimal training. Non-speech sounds, namely, cough and wheeze, have been used to predict spirometry variables, but the role of speech sounds that occur in natural speaking for a similar task has not been explored. In this work, the spirometry variable, FVC has been predicted from sustained phonations of vowel sounds using a convolutional dense neural network (CDNN). Mel-spectrogram has been used as a feature. An experiment conducted using 160 subjects indicates, /i/ is the best sound and /u:/ is worst for the prediction task with an average Mean Absolute Error of 0.67l(±. 07l) and 0.70l(± 0.13l) among all sustained phonations of vowels sounds considered in this work.","PeriodicalId":156116,"journal":{"name":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"284 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convolutional Dense Neural Network Based Spirometry Variable FVC Prediction Using Sustained Phonations\",\"authors\":\"Shivani Yadav, D. Gope, U. Krishnaswamy, P. Ghosh\",\"doi\":\"10.1109/mlsp52302.2021.9596159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spirometry is a lung function test used to diagnose and monitor lung diseases like asthma, pneumonia, chronic obstructive pulmonary disease, etc. Spirometry measures forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1), and their ratio to determine lung health. Spirometry is very time-consuming, strenuous, and requires proper training. Alternate methods based on voice for diagnosis and monitoring of lung health are promising because they are faster, easy to do, and require minimal training. Non-speech sounds, namely, cough and wheeze, have been used to predict spirometry variables, but the role of speech sounds that occur in natural speaking for a similar task has not been explored. In this work, the spirometry variable, FVC has been predicted from sustained phonations of vowel sounds using a convolutional dense neural network (CDNN). Mel-spectrogram has been used as a feature. An experiment conducted using 160 subjects indicates, /i/ is the best sound and /u:/ is worst for the prediction task with an average Mean Absolute Error of 0.67l(±. 07l) and 0.70l(± 0.13l) among all sustained phonations of vowels sounds considered in this work.\",\"PeriodicalId\":156116,\"journal\":{\"name\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"284 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mlsp52302.2021.9596159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 31st International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mlsp52302.2021.9596159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional Dense Neural Network Based Spirometry Variable FVC Prediction Using Sustained Phonations
Spirometry is a lung function test used to diagnose and monitor lung diseases like asthma, pneumonia, chronic obstructive pulmonary disease, etc. Spirometry measures forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1), and their ratio to determine lung health. Spirometry is very time-consuming, strenuous, and requires proper training. Alternate methods based on voice for diagnosis and monitoring of lung health are promising because they are faster, easy to do, and require minimal training. Non-speech sounds, namely, cough and wheeze, have been used to predict spirometry variables, but the role of speech sounds that occur in natural speaking for a similar task has not been explored. In this work, the spirometry variable, FVC has been predicted from sustained phonations of vowel sounds using a convolutional dense neural network (CDNN). Mel-spectrogram has been used as a feature. An experiment conducted using 160 subjects indicates, /i/ is the best sound and /u:/ is worst for the prediction task with an average Mean Absolute Error of 0.67l(±. 07l) and 0.70l(± 0.13l) among all sustained phonations of vowels sounds considered in this work.