基于粗精细曲率分析的旋转不变三维人脸地标

Przemyslaw Szeptycki, M. Ardabilian, Liming Chen
{"title":"基于粗精细曲率分析的旋转不变三维人脸地标","authors":"Przemyslaw Szeptycki, M. Ardabilian, Liming Chen","doi":"10.1109/BTAS.2009.5339052","DOIUrl":null,"url":null,"abstract":"Automatic 2.5D face landmarking aims at locating facial feature points on 2.5D face models, such as eye corners, nose tip, etc. and has many applications ranging from face registration to facial expression recognition. In this paper, we propose a rotation invariant 2.5D face landmarking solution based on facial curvature analysis combined with a generic 2.5D face model and make use of a coarse-to-fine strategy for more accurate facial feature points localization. Experimented on more than 1600 face models randomly selected from the FRGC dataset, our technique displays, compared to a ground truth from a manual 3D face landmarking, a 100% of good nose tip localization in 8 mm precision and 100% of good localization for the eye inner corner in 12 mm precision.","PeriodicalId":325900,"journal":{"name":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":"{\"title\":\"A coarse-to-fine curvature analysis-based rotation invariant 3D face landmarking\",\"authors\":\"Przemyslaw Szeptycki, M. Ardabilian, Liming Chen\",\"doi\":\"10.1109/BTAS.2009.5339052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic 2.5D face landmarking aims at locating facial feature points on 2.5D face models, such as eye corners, nose tip, etc. and has many applications ranging from face registration to facial expression recognition. In this paper, we propose a rotation invariant 2.5D face landmarking solution based on facial curvature analysis combined with a generic 2.5D face model and make use of a coarse-to-fine strategy for more accurate facial feature points localization. Experimented on more than 1600 face models randomly selected from the FRGC dataset, our technique displays, compared to a ground truth from a manual 3D face landmarking, a 100% of good nose tip localization in 8 mm precision and 100% of good localization for the eye inner corner in 12 mm precision.\",\"PeriodicalId\":325900,\"journal\":{\"name\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"127\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2009.5339052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2009.5339052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

摘要

自动2.5D人脸地标定位旨在定位2.5D人脸模型上的面部特征点,如眼角、鼻尖等,具有从人脸注册到面部表情识别等多种应用。本文提出了一种基于人脸曲率分析的旋转不变2.5D人脸标记方法,并结合通用2.5D人脸模型,利用从粗到精的策略进行更精确的人脸特征点定位。在从FRGC数据集中随机选择的1600多个人脸模型上进行实验,我们的技术显示,与手动3D人脸标记的基础事实相比,在8毫米精度下,鼻尖的100%良好定位,在12毫米精度下,眼睛内角的100%良好定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A coarse-to-fine curvature analysis-based rotation invariant 3D face landmarking
Automatic 2.5D face landmarking aims at locating facial feature points on 2.5D face models, such as eye corners, nose tip, etc. and has many applications ranging from face registration to facial expression recognition. In this paper, we propose a rotation invariant 2.5D face landmarking solution based on facial curvature analysis combined with a generic 2.5D face model and make use of a coarse-to-fine strategy for more accurate facial feature points localization. Experimented on more than 1600 face models randomly selected from the FRGC dataset, our technique displays, compared to a ground truth from a manual 3D face landmarking, a 100% of good nose tip localization in 8 mm precision and 100% of good localization for the eye inner corner in 12 mm precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信