用形状字典分割

Wenyang Liu, D. Ruan
{"title":"用形状字典分割","authors":"Wenyang Liu, D. Ruan","doi":"10.1109/ISBI.2014.6867882","DOIUrl":null,"url":null,"abstract":"Image segmentation plays an important role in many medical applications. Automatic segmentation algorithms are challenged by low SNR and significant artifacts resulting from motion and signal voids. In this study, we propose a novel level set based segmentation method with a shape dictionary. Unlike previous studies that use a single template or probabilistic models, we propose to construct a shape dictionary and model the shape prior as sparse combinations of shape templates in the dictionary. The proposed method generated promising segmentation results on low SNR MR images, even with signal voids.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"10 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Segmentation with a shape dictionary\",\"authors\":\"Wenyang Liu, D. Ruan\",\"doi\":\"10.1109/ISBI.2014.6867882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation plays an important role in many medical applications. Automatic segmentation algorithms are challenged by low SNR and significant artifacts resulting from motion and signal voids. In this study, we propose a novel level set based segmentation method with a shape dictionary. Unlike previous studies that use a single template or probabilistic models, we propose to construct a shape dictionary and model the shape prior as sparse combinations of shape templates in the dictionary. The proposed method generated promising segmentation results on low SNR MR images, even with signal voids.\",\"PeriodicalId\":440405,\"journal\":{\"name\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"10 6\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2014.6867882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

图像分割在许多医学应用中起着重要的作用。自动分割算法受到低信噪比和由运动和信号空洞引起的明显伪影的挑战。在这项研究中,我们提出了一种新的基于水平集的形状字典分割方法。与以往使用单一模板或概率模型的研究不同,我们提出构建形状字典,并将形状先验建模为字典中形状模板的稀疏组合。该方法在低信噪比的MR图像上产生了很好的分割结果,即使存在信号空洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation with a shape dictionary
Image segmentation plays an important role in many medical applications. Automatic segmentation algorithms are challenged by low SNR and significant artifacts resulting from motion and signal voids. In this study, we propose a novel level set based segmentation method with a shape dictionary. Unlike previous studies that use a single template or probabilistic models, we propose to construct a shape dictionary and model the shape prior as sparse combinations of shape templates in the dictionary. The proposed method generated promising segmentation results on low SNR MR images, even with signal voids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信