齐次微分包含的光滑Lyapunov函数

H. Nakamura, Y. Yamashita, H. Nishitani
{"title":"齐次微分包含的光滑Lyapunov函数","authors":"H. Nakamura, Y. Yamashita, H. Nishitani","doi":"10.1109/SICE.2002.1196633","DOIUrl":null,"url":null,"abstract":"This paper provides a construction method of a smooth homogeneous Lyapunov function associated with a discontinuous homogeneous system, which is locally and asymptotically stable. First, we analyze two similar converse Lyapunov theorems for differential inclusions and unify them into a simple theorem. Next, we propose a new definition of homogeneous differential inclusion. Then, we construct a smooth, homogeneous Lyapunov function associated with the homogeneous differential inclusion. Finally, we show that the order of homogeneity of a homogeneous system indicates the speed of convergence.","PeriodicalId":301855,"journal":{"name":"Proceedings of the 41st SICE Annual Conference. SICE 2002.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Smooth Lyapunov functions for homogeneous differential inclusions\",\"authors\":\"H. Nakamura, Y. Yamashita, H. Nishitani\",\"doi\":\"10.1109/SICE.2002.1196633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper provides a construction method of a smooth homogeneous Lyapunov function associated with a discontinuous homogeneous system, which is locally and asymptotically stable. First, we analyze two similar converse Lyapunov theorems for differential inclusions and unify them into a simple theorem. Next, we propose a new definition of homogeneous differential inclusion. Then, we construct a smooth, homogeneous Lyapunov function associated with the homogeneous differential inclusion. Finally, we show that the order of homogeneity of a homogeneous system indicates the speed of convergence.\",\"PeriodicalId\":301855,\"journal\":{\"name\":\"Proceedings of the 41st SICE Annual Conference. SICE 2002.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st SICE Annual Conference. SICE 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2002.1196633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st SICE Annual Conference. SICE 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2002.1196633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

本文给出了一类局部渐近稳定的不连续齐次系统的光滑齐次Lyapunov函数的构造方法。首先,我们分析了微分包含的两个相似的逆Lyapunov定理,并将它们统一为一个简单的定理。其次,我们提出了齐次微分包含的新定义。然后,我们构造了与齐次微分包含相关的光滑齐次Lyapunov函数。最后,我们证明了齐次系统的齐次阶表示其收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Smooth Lyapunov functions for homogeneous differential inclusions
This paper provides a construction method of a smooth homogeneous Lyapunov function associated with a discontinuous homogeneous system, which is locally and asymptotically stable. First, we analyze two similar converse Lyapunov theorems for differential inclusions and unify them into a simple theorem. Next, we propose a new definition of homogeneous differential inclusion. Then, we construct a smooth, homogeneous Lyapunov function associated with the homogeneous differential inclusion. Finally, we show that the order of homogeneity of a homogeneous system indicates the speed of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信