一个实际可实现和可处理的委托逻辑

Ninghui Li, Benjamin N. Grosof, J. Feigenbaum
{"title":"一个实际可实现和可处理的委托逻辑","authors":"Ninghui Li, Benjamin N. Grosof, J. Feigenbaum","doi":"10.1109/SECPRI.2000.848444","DOIUrl":null,"url":null,"abstract":"We address the goal of making Delegation Logic (DL) into a practically implementable and tractable trust management system. DL (N. Li et al., 1999) is a logic based knowledge representation (i.e., language) for authorization in large scale, open, distributed systems. DL inferencing is computationally intractable and highly impractical to implement. We introduce a new version of Delegation Logic that remedies these difficulties. To achieve this, we impose a syntactic restriction and redefine the semantics somewhat. We show that, for this revised version of DL, inferencing is computationally tractable under the same commonly met restrictions for which Ordinary Logic Programs (OLP) inferencing is tractable (e.g., Datalog and bounded number of logical variables per rule). We give an implementation architecture for this version of DL; it uses a delegation compiler from DL to OLP and can modularly exploit a variety of existing OLP inference engines. As proof of concept, we have implemented a large expressive subset of this version of DL, using this architecture.","PeriodicalId":373624,"journal":{"name":"Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"125","resultStr":"{\"title\":\"A practically implementable and tractable delegation logic\",\"authors\":\"Ninghui Li, Benjamin N. Grosof, J. Feigenbaum\",\"doi\":\"10.1109/SECPRI.2000.848444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the goal of making Delegation Logic (DL) into a practically implementable and tractable trust management system. DL (N. Li et al., 1999) is a logic based knowledge representation (i.e., language) for authorization in large scale, open, distributed systems. DL inferencing is computationally intractable and highly impractical to implement. We introduce a new version of Delegation Logic that remedies these difficulties. To achieve this, we impose a syntactic restriction and redefine the semantics somewhat. We show that, for this revised version of DL, inferencing is computationally tractable under the same commonly met restrictions for which Ordinary Logic Programs (OLP) inferencing is tractable (e.g., Datalog and bounded number of logical variables per rule). We give an implementation architecture for this version of DL; it uses a delegation compiler from DL to OLP and can modularly exploit a variety of existing OLP inference engines. As proof of concept, we have implemented a large expressive subset of this version of DL, using this architecture.\",\"PeriodicalId\":373624,\"journal\":{\"name\":\"Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"125\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECPRI.2000.848444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECPRI.2000.848444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 125

摘要

我们的目标是使委托逻辑(DL)成为一个实际可实现和可处理的信任管理系统。DL (N. Li et al., 1999)是一种基于逻辑的知识表示(即语言),用于大规模、开放、分布式系统中的授权。深度学习推理在计算上是难以处理的,而且很难实现。我们引入了一个新版本的委托逻辑来解决这些困难。为了实现这一点,我们施加了语法限制并在某种程度上重新定义了语义。我们表明,对于这个修订版本的深度学习,推理在与普通逻辑程序(OLP)推理可处理的相同的通常满足的限制下是计算可处理的(例如,每个规则的数据和有限数量的逻辑变量)。我们给出了该版本DL的实现架构;它使用从DL到OLP的委托编译器,并且可以模块化地利用各种现有的OLP推理引擎。作为概念证明,我们已经使用这个架构实现了这个版本的深度学习的一个大的表达子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practically implementable and tractable delegation logic
We address the goal of making Delegation Logic (DL) into a practically implementable and tractable trust management system. DL (N. Li et al., 1999) is a logic based knowledge representation (i.e., language) for authorization in large scale, open, distributed systems. DL inferencing is computationally intractable and highly impractical to implement. We introduce a new version of Delegation Logic that remedies these difficulties. To achieve this, we impose a syntactic restriction and redefine the semantics somewhat. We show that, for this revised version of DL, inferencing is computationally tractable under the same commonly met restrictions for which Ordinary Logic Programs (OLP) inferencing is tractable (e.g., Datalog and bounded number of logical variables per rule). We give an implementation architecture for this version of DL; it uses a delegation compiler from DL to OLP and can modularly exploit a variety of existing OLP inference engines. As proof of concept, we have implemented a large expressive subset of this version of DL, using this architecture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信