Saminda Abeyruwan, A. Bewley, Nicholas M. Boffi, K. Choromanski, David B. D'Ambrosio, Deepali Jain, P. Sanketi, A. Shankar, Vikas Sindhwani, Sumeet Singh, J. Slotine, Stephen Tu
{"title":"敏捷捕获与全身MPC和黑盒策略学习","authors":"Saminda Abeyruwan, A. Bewley, Nicholas M. Boffi, K. Choromanski, David B. D'Ambrosio, Deepali Jain, P. Sanketi, A. Shankar, Vikas Sindhwani, Sumeet Singh, J. Slotine, Stephen Tu","doi":"10.48550/arXiv.2306.08205","DOIUrl":null,"url":null,"abstract":"We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing\"classical\"and\"learning-based\"techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Agile Catching with Whole-Body MPC and Blackbox Policy Learning\",\"authors\":\"Saminda Abeyruwan, A. Bewley, Nicholas M. Boffi, K. Choromanski, David B. D'Ambrosio, Deepali Jain, P. Sanketi, A. Shankar, Vikas Sindhwani, Sumeet Singh, J. Slotine, Stephen Tu\",\"doi\":\"10.48550/arXiv.2306.08205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing\\\"classical\\\"and\\\"learning-based\\\"techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching\",\"PeriodicalId\":268449,\"journal\":{\"name\":\"Conference on Learning for Dynamics & Control\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Learning for Dynamics & Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.08205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.08205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Agile Catching with Whole-Body MPC and Blackbox Policy Learning
We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a challenging task that involves tracking, intercepting, and cradling a thrown object with access only to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a second. We present the relative merits of two fundamentally different solution strategies: (i) Model Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement Learning using zeroth-order optimization. We provide insights into various performance trade-offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing"classical"and"learning-based"techniques for agile robot control. Videos of our experiments may be found at https://sites.google.com/view/agile-catching