物理层匿名通信:面向匿名熵的预编码设计(特邀论文)

Zhongxiang Wei, C. Masouros, Sumei Sun
{"title":"物理层匿名通信:面向匿名熵的预编码设计(特邀论文)","authors":"Zhongxiang Wei, C. Masouros, Sumei Sun","doi":"10.1109/icassp43922.2022.9746100","DOIUrl":null,"url":null,"abstract":"Different from traditional security-oriented designs, the aim of anonymizing techniques is to mask users' identities during communication, thereby providing users with unidentifiability and unlinkability. The existing anonymizing techniques are only designated at upper layers of networks, ignoring the risk of anonymity leakage at physical layer (PHY). In this paper, we address the PHY anonymity design with focus on a typical uplink scenario where the receiver is equipped with more antennas than the sender. With the increased degrees-of-freedom at the receiver side, we first propose a maximum likelihood estimation (MLE) signal trace-back detector, which only analyzes the signaling pattern of the received signal to disclose the sender's identity. Accordingly, an anonymity entropy anonymous (AEA) precoder is proposed, which manipulates the transmitted signalling pattern to counteract the receiver's trace-back detector and meanwhile to guarantee high receive signal-to-interference-plus-noise ratio for communication. More importantly, more data streams can be multiplexed than the number of transmit antennas, which is particularly suitable for the strong receiver configuration. Simulation demonstrates that the proposed AEA precoder can simultaneously provide high anonymity and communication performance.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Layer Anonymous Communications: An Anonymity Entropy Oriented Precoding Design (Invited Paper)\",\"authors\":\"Zhongxiang Wei, C. Masouros, Sumei Sun\",\"doi\":\"10.1109/icassp43922.2022.9746100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different from traditional security-oriented designs, the aim of anonymizing techniques is to mask users' identities during communication, thereby providing users with unidentifiability and unlinkability. The existing anonymizing techniques are only designated at upper layers of networks, ignoring the risk of anonymity leakage at physical layer (PHY). In this paper, we address the PHY anonymity design with focus on a typical uplink scenario where the receiver is equipped with more antennas than the sender. With the increased degrees-of-freedom at the receiver side, we first propose a maximum likelihood estimation (MLE) signal trace-back detector, which only analyzes the signaling pattern of the received signal to disclose the sender's identity. Accordingly, an anonymity entropy anonymous (AEA) precoder is proposed, which manipulates the transmitted signalling pattern to counteract the receiver's trace-back detector and meanwhile to guarantee high receive signal-to-interference-plus-noise ratio for communication. More importantly, more data streams can be multiplexed than the number of transmit antennas, which is particularly suitable for the strong receiver configuration. Simulation demonstrates that the proposed AEA precoder can simultaneously provide high anonymity and communication performance.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9746100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统的面向安全的设计不同,匿名化技术的目的是在通信过程中掩盖用户的身份,从而为用户提供不可识别性和不可链接性。现有的匿名化技术只针对网络的上层,忽略了物理层匿名泄露的风险。在本文中,我们讨论了PHY匿名设计,重点关注典型的上行场景,其中接收器配备的天线比发送者多。随着接收端自由度的增加,我们首先提出了一种最大似然估计(MLE)信号跟踪检测器,它只分析接收信号的信令模式来揭示发送者的身份。在此基础上,提出了一种匿名熵匿名(AEA)预编码器,该预编码器对发送的信号模式进行处理,以抵消接收端跟踪检测器的干扰,同时保证较高的接收信噪比。更重要的是,可以复用的数据流比发射天线的数量多,这特别适合于强接收配置。仿真结果表明,该预编码器能够同时提供较高的匿名性和通信性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical Layer Anonymous Communications: An Anonymity Entropy Oriented Precoding Design (Invited Paper)
Different from traditional security-oriented designs, the aim of anonymizing techniques is to mask users' identities during communication, thereby providing users with unidentifiability and unlinkability. The existing anonymizing techniques are only designated at upper layers of networks, ignoring the risk of anonymity leakage at physical layer (PHY). In this paper, we address the PHY anonymity design with focus on a typical uplink scenario where the receiver is equipped with more antennas than the sender. With the increased degrees-of-freedom at the receiver side, we first propose a maximum likelihood estimation (MLE) signal trace-back detector, which only analyzes the signaling pattern of the received signal to disclose the sender's identity. Accordingly, an anonymity entropy anonymous (AEA) precoder is proposed, which manipulates the transmitted signalling pattern to counteract the receiver's trace-back detector and meanwhile to guarantee high receive signal-to-interference-plus-noise ratio for communication. More importantly, more data streams can be multiplexed than the number of transmit antennas, which is particularly suitable for the strong receiver configuration. Simulation demonstrates that the proposed AEA precoder can simultaneously provide high anonymity and communication performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信