主题识别系统过滤Twitter feed

S. Altammami, O. Rana
{"title":"主题识别系统过滤Twitter feed","authors":"S. Altammami, O. Rana","doi":"10.1109/ISCMI.2016.14","DOIUrl":null,"url":null,"abstract":"Twitter is a micro-blogging service where users publish messages of 140 characters. This simple feature makes Twitter the source for concise, instant and interesting information ranging from friends’ updates to breaking news. However, a problem emerge when a user follows many accounts while interested in a subset of its content, which leads to overwhelming tweets he is not interested in receiving. We propose a solution to this problem by filtering incoming tweets based on the user’s interests, which is accomplished through a classifier. The proposed classifier system categorizes tweets into generic classes like Entertainment, Health, Sport, News, Food, Technology and Health. This paper describes the creation and evaluation of the classifier until 89% accuracy obtained.","PeriodicalId":417057,"journal":{"name":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Topic Identification System to Filter Twitter Feeds\",\"authors\":\"S. Altammami, O. Rana\",\"doi\":\"10.1109/ISCMI.2016.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter is a micro-blogging service where users publish messages of 140 characters. This simple feature makes Twitter the source for concise, instant and interesting information ranging from friends’ updates to breaking news. However, a problem emerge when a user follows many accounts while interested in a subset of its content, which leads to overwhelming tweets he is not interested in receiving. We propose a solution to this problem by filtering incoming tweets based on the user’s interests, which is accomplished through a classifier. The proposed classifier system categorizes tweets into generic classes like Entertainment, Health, Sport, News, Food, Technology and Health. This paper describes the creation and evaluation of the classifier until 89% accuracy obtained.\",\"PeriodicalId\":417057,\"journal\":{\"name\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI.2016.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI.2016.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

推特是一种微博服务,用户可以发布140个字符的消息。这个简单的功能使Twitter成为从朋友更新到突发新闻的简明、即时和有趣信息的来源。然而,当用户关注了许多账户,而对其中的一部分内容感兴趣时,问题就出现了,这会导致他不感兴趣的推文铺天盖地。我们提出了一种解决方案,即根据用户的兴趣过滤传入的tweet,这是通过分类器完成的。提出的分类器系统将推文分为娱乐、健康、体育、新闻、食品、科技和健康等类。本文描述了分类器的创建和评估,直到达到89%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Topic Identification System to Filter Twitter Feeds
Twitter is a micro-blogging service where users publish messages of 140 characters. This simple feature makes Twitter the source for concise, instant and interesting information ranging from friends’ updates to breaking news. However, a problem emerge when a user follows many accounts while interested in a subset of its content, which leads to overwhelming tweets he is not interested in receiving. We propose a solution to this problem by filtering incoming tweets based on the user’s interests, which is accomplished through a classifier. The proposed classifier system categorizes tweets into generic classes like Entertainment, Health, Sport, News, Food, Technology and Health. This paper describes the creation and evaluation of the classifier until 89% accuracy obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信