{"title":"主题识别系统过滤Twitter feed","authors":"S. Altammami, O. Rana","doi":"10.1109/ISCMI.2016.14","DOIUrl":null,"url":null,"abstract":"Twitter is a micro-blogging service where users publish messages of 140 characters. This simple feature makes Twitter the source for concise, instant and interesting information ranging from friends’ updates to breaking news. However, a problem emerge when a user follows many accounts while interested in a subset of its content, which leads to overwhelming tweets he is not interested in receiving. We propose a solution to this problem by filtering incoming tweets based on the user’s interests, which is accomplished through a classifier. The proposed classifier system categorizes tweets into generic classes like Entertainment, Health, Sport, News, Food, Technology and Health. This paper describes the creation and evaluation of the classifier until 89% accuracy obtained.","PeriodicalId":417057,"journal":{"name":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Topic Identification System to Filter Twitter Feeds\",\"authors\":\"S. Altammami, O. Rana\",\"doi\":\"10.1109/ISCMI.2016.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Twitter is a micro-blogging service where users publish messages of 140 characters. This simple feature makes Twitter the source for concise, instant and interesting information ranging from friends’ updates to breaking news. However, a problem emerge when a user follows many accounts while interested in a subset of its content, which leads to overwhelming tweets he is not interested in receiving. We propose a solution to this problem by filtering incoming tweets based on the user’s interests, which is accomplished through a classifier. The proposed classifier system categorizes tweets into generic classes like Entertainment, Health, Sport, News, Food, Technology and Health. This paper describes the creation and evaluation of the classifier until 89% accuracy obtained.\",\"PeriodicalId\":417057,\"journal\":{\"name\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI.2016.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI.2016.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topic Identification System to Filter Twitter Feeds
Twitter is a micro-blogging service where users publish messages of 140 characters. This simple feature makes Twitter the source for concise, instant and interesting information ranging from friends’ updates to breaking news. However, a problem emerge when a user follows many accounts while interested in a subset of its content, which leads to overwhelming tweets he is not interested in receiving. We propose a solution to this problem by filtering incoming tweets based on the user’s interests, which is accomplished through a classifier. The proposed classifier system categorizes tweets into generic classes like Entertainment, Health, Sport, News, Food, Technology and Health. This paper describes the creation and evaluation of the classifier until 89% accuracy obtained.