基于图像对的各向异性材料建模

J. Feng, Wangyu Xiao, Bingfeng Zhou
{"title":"基于图像对的各向异性材料建模","authors":"J. Feng, Wangyu Xiao, Bingfeng Zhou","doi":"10.1145/2542355.2542376","DOIUrl":null,"url":null,"abstract":"We present a method for modeling anisotropic materials with only two images taken by an ordinary camera, one under diffuse light which we call texture image, and the other under point light named hightlighted image. First we decompose the input images into reflectance image and illumination image. Then we use the intrinsic images to obtain the reflectance property and geometry information of the material, including a group of BRDF parameters, an orientation field and a height field. Then images can be rendered with these information under new lighting and viewing conditions.","PeriodicalId":232593,"journal":{"name":"SIGGRAPH Asia 2013 Technical Briefs","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image-pair-based anisotropic material modeling\",\"authors\":\"J. Feng, Wangyu Xiao, Bingfeng Zhou\",\"doi\":\"10.1145/2542355.2542376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for modeling anisotropic materials with only two images taken by an ordinary camera, one under diffuse light which we call texture image, and the other under point light named hightlighted image. First we decompose the input images into reflectance image and illumination image. Then we use the intrinsic images to obtain the reflectance property and geometry information of the material, including a group of BRDF parameters, an orientation field and a height field. Then images can be rendered with these information under new lighting and viewing conditions.\",\"PeriodicalId\":232593,\"journal\":{\"name\":\"SIGGRAPH Asia 2013 Technical Briefs\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2013 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2542355.2542376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2013 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2542355.2542376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用普通相机拍摄的两幅图像(漫射光下的纹理图像和点光下的高光图像)对各向异性材料进行建模的方法。首先将输入图像分解为反射图像和照明图像。然后利用本征图像获得材料的反射特性和几何信息,包括一组BRDF参数、一个方向场和一个高度场。然后,图像可以在新的照明和观看条件下渲染这些信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-pair-based anisotropic material modeling
We present a method for modeling anisotropic materials with only two images taken by an ordinary camera, one under diffuse light which we call texture image, and the other under point light named hightlighted image. First we decompose the input images into reflectance image and illumination image. Then we use the intrinsic images to obtain the reflectance property and geometry information of the material, including a group of BRDF parameters, an orientation field and a height field. Then images can be rendered with these information under new lighting and viewing conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信