{"title":"移动微尺度机器人代理的进化形态学","authors":"Matthew Uppington, P. Gobbo, S. Hauert, H. Hauser","doi":"10.1109/MARSS55884.2022.9870459","DOIUrl":null,"url":null,"abstract":"Designing new locomotive mechanisms for micro-scale robotic systems could enable new approaches to tackling problems such as transporting cargos, or self-assembling in to pre-programmed architectures. Morphological factors often play a crucial role in determining the behaviour of microsystems, yet understanding how to design these aspects optimally is a challenge. This paper explores how the morphology of a multi-cellular micro-robotic agent can be optimised for reliable locomotion using artificial evolution in a stochastic simulator. Evolved morphologies are found to yield significantly better performance in terms of the reliability of the travel direction and the distance covered, compared to random morphologies.","PeriodicalId":144730,"journal":{"name":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evolving Morphologies for Locomoting Micro-scale Robotic Agents\",\"authors\":\"Matthew Uppington, P. Gobbo, S. Hauert, H. Hauser\",\"doi\":\"10.1109/MARSS55884.2022.9870459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Designing new locomotive mechanisms for micro-scale robotic systems could enable new approaches to tackling problems such as transporting cargos, or self-assembling in to pre-programmed architectures. Morphological factors often play a crucial role in determining the behaviour of microsystems, yet understanding how to design these aspects optimally is a challenge. This paper explores how the morphology of a multi-cellular micro-robotic agent can be optimised for reliable locomotion using artificial evolution in a stochastic simulator. Evolved morphologies are found to yield significantly better performance in terms of the reliability of the travel direction and the distance covered, compared to random morphologies.\",\"PeriodicalId\":144730,\"journal\":{\"name\":\"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS55884.2022.9870459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS55884.2022.9870459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving Morphologies for Locomoting Micro-scale Robotic Agents
Designing new locomotive mechanisms for micro-scale robotic systems could enable new approaches to tackling problems such as transporting cargos, or self-assembling in to pre-programmed architectures. Morphological factors often play a crucial role in determining the behaviour of microsystems, yet understanding how to design these aspects optimally is a challenge. This paper explores how the morphology of a multi-cellular micro-robotic agent can be optimised for reliable locomotion using artificial evolution in a stochastic simulator. Evolved morphologies are found to yield significantly better performance in terms of the reliability of the travel direction and the distance covered, compared to random morphologies.