挖掘具有多个最小支持度的正、负模糊关联规则

Weimin Ouyang
{"title":"挖掘具有多个最小支持度的正、负模糊关联规则","authors":"Weimin Ouyang","doi":"10.1109/ICSAI.2012.6223498","DOIUrl":null,"url":null,"abstract":"Association rules mining is an important research topic in data mining and knowledge discovery. Traditional algorithms for mining association rules are built on the binary attributes databases, which has three limitations. Firstly, it can not concern quantitative attributes; secondly, only the positive association rules are discovered; thirdly, it treat each item with the same frequency although different item may have different frequency. In this paper, we put forward a discovery algorithm for mining positive and negative fuzzy association rules to resolve these three limitations.","PeriodicalId":164945,"journal":{"name":"2012 International Conference on Systems and Informatics (ICSAI2012)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Mining positive and negative fuzzy association rules with multiple minimum supports\",\"authors\":\"Weimin Ouyang\",\"doi\":\"10.1109/ICSAI.2012.6223498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Association rules mining is an important research topic in data mining and knowledge discovery. Traditional algorithms for mining association rules are built on the binary attributes databases, which has three limitations. Firstly, it can not concern quantitative attributes; secondly, only the positive association rules are discovered; thirdly, it treat each item with the same frequency although different item may have different frequency. In this paper, we put forward a discovery algorithm for mining positive and negative fuzzy association rules to resolve these three limitations.\",\"PeriodicalId\":164945,\"journal\":{\"name\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Systems and Informatics (ICSAI2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSAI.2012.6223498\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Systems and Informatics (ICSAI2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAI.2012.6223498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

关联规则挖掘是数据挖掘和知识发现领域的一个重要研究课题。传统的关联规则挖掘算法是建立在二元属性数据库上的,这种算法有三个局限性。首先,它不能关注定量属性;其次,只发现正向关联规则;第三,它以相同的频率对待每个项目,尽管不同的项目可能有不同的频率。本文提出了一种挖掘正、负模糊关联规则的发现算法来解决这三个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining positive and negative fuzzy association rules with multiple minimum supports
Association rules mining is an important research topic in data mining and knowledge discovery. Traditional algorithms for mining association rules are built on the binary attributes databases, which has three limitations. Firstly, it can not concern quantitative attributes; secondly, only the positive association rules are discovered; thirdly, it treat each item with the same frequency although different item may have different frequency. In this paper, we put forward a discovery algorithm for mining positive and negative fuzzy association rules to resolve these three limitations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信