在块多线程处理器中实现极快的上下文切换

Winfried Grünewald, T. Ungerer
{"title":"在块多线程处理器中实现极快的上下文切换","authors":"Winfried Grünewald, T. Ungerer","doi":"10.1109/EURMIC.1996.546486","DOIUrl":null,"url":null,"abstract":"Multithreaded processors use a fast context switch to bridge latencies caused by memory accesses or by synchronization operations. In the block-multithreaded processor-called Rhamma-load/store, synchronization and execution operations of different threads of control are executed simultaneously by appropriate functional units. A fast context switch is performed, whenever a functional unit comes across an operation destined for another unit. Switching contexts on each load/store instruction sequence allows a much faster context switch in the execution unit than previously published designs do. The results show the potential of multithreading to spare expensive off-chip cache in a workstation environment. The load/store unit proves as the principal bottleneck. In particular the memory cycle time is performance critical. We show that multithreaded processors profit more than conventional RISC processors by a shorter memory cycle time.","PeriodicalId":311520,"journal":{"name":"Proceedings of EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design Strategies","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Towards extremely fast context switching in a block-multithreaded processor\",\"authors\":\"Winfried Grünewald, T. Ungerer\",\"doi\":\"10.1109/EURMIC.1996.546486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multithreaded processors use a fast context switch to bridge latencies caused by memory accesses or by synchronization operations. In the block-multithreaded processor-called Rhamma-load/store, synchronization and execution operations of different threads of control are executed simultaneously by appropriate functional units. A fast context switch is performed, whenever a functional unit comes across an operation destined for another unit. Switching contexts on each load/store instruction sequence allows a much faster context switch in the execution unit than previously published designs do. The results show the potential of multithreading to spare expensive off-chip cache in a workstation environment. The load/store unit proves as the principal bottleneck. In particular the memory cycle time is performance critical. We show that multithreaded processors profit more than conventional RISC processors by a shorter memory cycle time.\",\"PeriodicalId\":311520,\"journal\":{\"name\":\"Proceedings of EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design Strategies\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design Strategies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURMIC.1996.546486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of EUROMICRO 96. 22nd Euromicro Conference. Beyond 2000: Hardware and Software Design Strategies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURMIC.1996.546486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

多线程处理器使用快速上下文切换来桥接由内存访问或同步操作引起的延迟。在块多线程处理器(称为Rhamma-load/store)中,不同控制线程的同步和执行操作由适当的功能单元同时执行。当一个功能单元遇到另一个单元的操作时,将执行快速上下文切换。在每个加载/存储指令序列上切换上下文允许在执行单元中比以前发布的设计更快地进行上下文切换。结果表明,在工作站环境中,多线程可以节省昂贵的片外缓存。装载/存储单元被证明是主要的瓶颈。特别是内存周期时间对性能至关重要。我们表明,多线程处理器比传统的RISC处理器在更短的内存周期时间内获利更多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards extremely fast context switching in a block-multithreaded processor
Multithreaded processors use a fast context switch to bridge latencies caused by memory accesses or by synchronization operations. In the block-multithreaded processor-called Rhamma-load/store, synchronization and execution operations of different threads of control are executed simultaneously by appropriate functional units. A fast context switch is performed, whenever a functional unit comes across an operation destined for another unit. Switching contexts on each load/store instruction sequence allows a much faster context switch in the execution unit than previously published designs do. The results show the potential of multithreading to spare expensive off-chip cache in a workstation environment. The load/store unit proves as the principal bottleneck. In particular the memory cycle time is performance critical. We show that multithreaded processors profit more than conventional RISC processors by a shorter memory cycle time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信