{"title":"离散拉普拉斯函数的本质谱","authors":"V. B. Kiran Kumar","doi":"10.17993/3ctic.2022.112.52-59","DOIUrl":null,"url":null,"abstract":"Consider the discrete Laplacian operator A acting on l2(Z). It is well known from the classical literature that the essential spectrum of A is a compact interval. In this article, we give an elementary proof for this result, using the finite-dimensional truncations An of A. We do not rely on symbol analysis or any infinite-dimensional arguments. Instead, we consider the eigenvalue-sequences of the truncations An and make use of the filtration techniques due to Arveson. Usage of such techniques to the discrete Schrödinger operator and to the multi-dimensional settings will be interesting future problems.","PeriodicalId":237333,"journal":{"name":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Essential Spectrum of Discrete Laplacian – Revisited\",\"authors\":\"V. B. Kiran Kumar\",\"doi\":\"10.17993/3ctic.2022.112.52-59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the discrete Laplacian operator A acting on l2(Z). It is well known from the classical literature that the essential spectrum of A is a compact interval. In this article, we give an elementary proof for this result, using the finite-dimensional truncations An of A. We do not rely on symbol analysis or any infinite-dimensional arguments. Instead, we consider the eigenvalue-sequences of the truncations An and make use of the filtration techniques due to Arveson. Usage of such techniques to the discrete Schrödinger operator and to the multi-dimensional settings will be interesting future problems.\",\"PeriodicalId\":237333,\"journal\":{\"name\":\"3C TIC: Cuadernos de desarrollo aplicados a las TIC\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3C TIC: Cuadernos de desarrollo aplicados a las TIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17993/3ctic.2022.112.52-59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C TIC: Cuadernos de desarrollo aplicados a las TIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3ctic.2022.112.52-59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Essential Spectrum of Discrete Laplacian – Revisited
Consider the discrete Laplacian operator A acting on l2(Z). It is well known from the classical literature that the essential spectrum of A is a compact interval. In this article, we give an elementary proof for this result, using the finite-dimensional truncations An of A. We do not rely on symbol analysis or any infinite-dimensional arguments. Instead, we consider the eigenvalue-sequences of the truncations An and make use of the filtration techniques due to Arveson. Usage of such techniques to the discrete Schrödinger operator and to the multi-dimensional settings will be interesting future problems.