机器人可达工作空间的层次概率估计

ICINCO-RA Pub Date : 1900-01-01 DOI:10.5220/0002205600600066
J. Yang, Patrick W. Dymond, M. Jenkin
{"title":"机器人可达工作空间的层次概率估计","authors":"J. Yang, Patrick W. Dymond, M. Jenkin","doi":"10.5220/0002205600600066","DOIUrl":null,"url":null,"abstract":"Estimating a robot’s reachable workspace is a fundamental problem in robotics. For simple kinematic chains within an empty environment this computation can be relatively straightforward. For mobile kinematic structures and cluttered environments, the problem becomes more challenging. An efficient probabilistic method for workspace estimation is developed by applying a hierarchical strategy and developing extensions to a probabilistic motion planner. Rather than treating each of the degrees of freedom (DOFs) ‘equally’, a hierarchical representation is used to maximize the volume of the robot’s workspace that is identified as reachable for each probe of the environment. Experiments with a simulated mobile manipulator demonstrate that the hierarchical approach is an effective alternative to the use of an estimation process based on the use of a traditional probabilistic planner.","PeriodicalId":302311,"journal":{"name":"ICINCO-RA","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hierarchical Probabilistic Estimation of Robot Reachable Workspace\",\"authors\":\"J. Yang, Patrick W. Dymond, M. Jenkin\",\"doi\":\"10.5220/0002205600600066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating a robot’s reachable workspace is a fundamental problem in robotics. For simple kinematic chains within an empty environment this computation can be relatively straightforward. For mobile kinematic structures and cluttered environments, the problem becomes more challenging. An efficient probabilistic method for workspace estimation is developed by applying a hierarchical strategy and developing extensions to a probabilistic motion planner. Rather than treating each of the degrees of freedom (DOFs) ‘equally’, a hierarchical representation is used to maximize the volume of the robot’s workspace that is identified as reachable for each probe of the environment. Experiments with a simulated mobile manipulator demonstrate that the hierarchical approach is an effective alternative to the use of an estimation process based on the use of a traditional probabilistic planner.\",\"PeriodicalId\":302311,\"journal\":{\"name\":\"ICINCO-RA\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICINCO-RA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0002205600600066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICINCO-RA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0002205600600066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

估计机器人的可达工作空间是机器人技术中的一个基本问题。对于空环境中的简单运动链,这种计算相对简单。对于移动的运动学结构和混乱的环境,这个问题变得更具挑战性。通过对概率运动规划器的扩展,提出了一种有效的概率工作空间估计方法。与其“平等”地对待每个自由度(dof),不如使用分层表示来最大化机器人工作空间的体积,该工作空间被识别为环境的每个探针都可以到达。模拟移动机械臂的实验表明,分层方法是基于传统概率规划器估计过程的有效替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Probabilistic Estimation of Robot Reachable Workspace
Estimating a robot’s reachable workspace is a fundamental problem in robotics. For simple kinematic chains within an empty environment this computation can be relatively straightforward. For mobile kinematic structures and cluttered environments, the problem becomes more challenging. An efficient probabilistic method for workspace estimation is developed by applying a hierarchical strategy and developing extensions to a probabilistic motion planner. Rather than treating each of the degrees of freedom (DOFs) ‘equally’, a hierarchical representation is used to maximize the volume of the robot’s workspace that is identified as reachable for each probe of the environment. Experiments with a simulated mobile manipulator demonstrate that the hierarchical approach is an effective alternative to the use of an estimation process based on the use of a traditional probabilistic planner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信