M. Danesi
{"title":"我","authors":"M. Danesi","doi":"10.1093/oso/9780198852247.003.0007","DOIUrl":null,"url":null,"abstract":"What kind of number is √−1? In a way that parallels the unexpected discovery of √2 by the Pythagoreans, when this number surfaced as a solution to a quadratic equation, mathematicians asked themselves what it could possibly mean. Not knowing what to call it, René Descartes named it an imaginary number. Like the irrationals, the discovery of i led to new ideas and discoveries. One of these was complex numbers—numbers having the form (a + bi), where a and b are real numbers and i is √−1. Incredibly, complex numbers turn out to have many applications. They are used to describe electric circuits and electromagnetic radiation and they are fundamental to quantum theory in physics. This chapter deals with imaginary numbers, which constitute another of the great ideas of mathematics that have not only changed the course of mathematics but also of human history.","PeriodicalId":168472,"journal":{"name":"Pythagoras' Legacy","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"i\",\"authors\":\"M. Danesi\",\"doi\":\"10.1093/oso/9780198852247.003.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"What kind of number is √−1? In a way that parallels the unexpected discovery of √2 by the Pythagoreans, when this number surfaced as a solution to a quadratic equation, mathematicians asked themselves what it could possibly mean. Not knowing what to call it, René Descartes named it an imaginary number. Like the irrationals, the discovery of i led to new ideas and discoveries. One of these was complex numbers—numbers having the form (a + bi), where a and b are real numbers and i is √−1. Incredibly, complex numbers turn out to have many applications. They are used to describe electric circuits and electromagnetic radiation and they are fundamental to quantum theory in physics. This chapter deals with imaginary numbers, which constitute another of the great ideas of mathematics that have not only changed the course of mathematics but also of human history.\",\"PeriodicalId\":168472,\"journal\":{\"name\":\"Pythagoras' Legacy\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pythagoras' Legacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198852247.003.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pythagoras' Legacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198852247.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

√- 1是什么数?就像毕达哥拉斯学派意外发现√2一样,当这个数字作为一个二次方程的解出现时,数学家们问自己它可能意味着什么。笛卡尔不知道该怎么称呼它,就把它命名为虚数。和无理性一样,它的发现也带来了新的想法和发现。其中之一是复数,即形式为(a + bi)的数,其中a和b是实数,i是√- 1。令人难以置信的是,复数被证明有许多应用。它们被用来描述电路和电磁辐射,是物理学中量子理论的基础。这一章讨论的是虚数,它是另一个伟大的数学思想,不仅改变了数学的进程,也改变了人类的历史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
i
What kind of number is √−1? In a way that parallels the unexpected discovery of √2 by the Pythagoreans, when this number surfaced as a solution to a quadratic equation, mathematicians asked themselves what it could possibly mean. Not knowing what to call it, René Descartes named it an imaginary number. Like the irrationals, the discovery of i led to new ideas and discoveries. One of these was complex numbers—numbers having the form (a + bi), where a and b are real numbers and i is √−1. Incredibly, complex numbers turn out to have many applications. They are used to describe electric circuits and electromagnetic radiation and they are fundamental to quantum theory in physics. This chapter deals with imaginary numbers, which constitute another of the great ideas of mathematics that have not only changed the course of mathematics but also of human history.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信