基于手势的机器人控制

V. S. Rao, C. Mahanta
{"title":"基于手势的机器人控制","authors":"V. S. Rao, C. Mahanta","doi":"10.1109/ICISIP.2006.4286082","DOIUrl":null,"url":null,"abstract":"Vision based techniques provide a natural way for controlling robots. In this paper, we present a visual gesture recognition system for controlling robots by using fuzzy-C - means clustering algorithm. The proposed method is applied for recognizing both static and dynamic hand gestures. In dynamic hand gesture recognition, instead of processing all video frames, key frames are extracted by using Hausdorff' distance method. After key frame extraction, a sequence of static gesture recognition operations is done for recognizing these key frames. The proposed technique requires training prior to its operation. Once trained, the system is ready for recognizing new gestures. A gesture database, consisting of 10 static gesture classes and 500 gesture samples per class and 3 different dynamic gestures, is created. The proposed method is successfully tested for recognizing 5000 new static gestures and 9 dynamic gestures.","PeriodicalId":187104,"journal":{"name":"2006 Fourth International Conference on Intelligent Sensing and Information Processing","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Gesture Based Robot Control\",\"authors\":\"V. S. Rao, C. Mahanta\",\"doi\":\"10.1109/ICISIP.2006.4286082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vision based techniques provide a natural way for controlling robots. In this paper, we present a visual gesture recognition system for controlling robots by using fuzzy-C - means clustering algorithm. The proposed method is applied for recognizing both static and dynamic hand gestures. In dynamic hand gesture recognition, instead of processing all video frames, key frames are extracted by using Hausdorff' distance method. After key frame extraction, a sequence of static gesture recognition operations is done for recognizing these key frames. The proposed technique requires training prior to its operation. Once trained, the system is ready for recognizing new gestures. A gesture database, consisting of 10 static gesture classes and 500 gesture samples per class and 3 different dynamic gestures, is created. The proposed method is successfully tested for recognizing 5000 new static gestures and 9 dynamic gestures.\",\"PeriodicalId\":187104,\"journal\":{\"name\":\"2006 Fourth International Conference on Intelligent Sensing and Information Processing\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 Fourth International Conference on Intelligent Sensing and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISIP.2006.4286082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Fourth International Conference on Intelligent Sensing and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIP.2006.4286082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

基于视觉的技术为控制机器人提供了一种自然的方法。本文提出了一种用模糊c均值聚类算法控制机器人的视觉手势识别系统。该方法同时用于识别静态和动态手势。在动态手势识别中,不处理所有视频帧,而是利用豪斯多夫距离法提取关键帧。在提取关键帧后,进行一系列静态手势识别操作来识别这些关键帧。所建议的技术在使用前需要经过培训。一旦经过训练,系统就可以识别新的手势。创建一个手势数据库,包含10个静态手势类,每个类500个手势样本和3个不同的动态手势。该方法已成功识别了5000种新的静态手势和9种新的动态手势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gesture Based Robot Control
Vision based techniques provide a natural way for controlling robots. In this paper, we present a visual gesture recognition system for controlling robots by using fuzzy-C - means clustering algorithm. The proposed method is applied for recognizing both static and dynamic hand gestures. In dynamic hand gesture recognition, instead of processing all video frames, key frames are extracted by using Hausdorff' distance method. After key frame extraction, a sequence of static gesture recognition operations is done for recognizing these key frames. The proposed technique requires training prior to its operation. Once trained, the system is ready for recognizing new gestures. A gesture database, consisting of 10 static gesture classes and 500 gesture samples per class and 3 different dynamic gestures, is created. The proposed method is successfully tested for recognizing 5000 new static gestures and 9 dynamic gestures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信