基于人工智能的视频监控高效算法设计

M. Mohana, RAVISH ARADHYA H V
{"title":"基于人工智能的视频监控高效算法设计","authors":"M. Mohana, RAVISH ARADHYA H V","doi":"10.34048/adcom.2019.phdforumpaper.5","DOIUrl":null,"url":null,"abstract":"Object detection and tracking algorithms such as YOLO(You Look Only Once Version V1 to V3), SSD and SORT implemented on COCO and indigenous data set for traffic surveillance and evaluated using the performance metrics such as True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), mean Average Precession (mAP). The designed CNN trained on dataset (small and large) had similar performance on test dataset, however the CNN trained on the large datasets that had larger intra-class variations was able classify a greater number of vehicles belonging to light and two-wheeler class. It achieved a validation accuracy of 98%. VGG16 achieved an accuracy of 97% followed by MobileNetV2 and InceptionV3 with 75% and 50% accuracy respectively.","PeriodicalId":195065,"journal":{"name":"Proceedings of ADCOM","volume":"496 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Efficient Algorithms for Video Surveillance Applications using Artificial Intelligence\",\"authors\":\"M. Mohana, RAVISH ARADHYA H V\",\"doi\":\"10.34048/adcom.2019.phdforumpaper.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Object detection and tracking algorithms such as YOLO(You Look Only Once Version V1 to V3), SSD and SORT implemented on COCO and indigenous data set for traffic surveillance and evaluated using the performance metrics such as True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), mean Average Precession (mAP). The designed CNN trained on dataset (small and large) had similar performance on test dataset, however the CNN trained on the large datasets that had larger intra-class variations was able classify a greater number of vehicles belonging to light and two-wheeler class. It achieved a validation accuracy of 98%. VGG16 achieved an accuracy of 97% followed by MobileNetV2 and InceptionV3 with 75% and 50% accuracy respectively.\",\"PeriodicalId\":195065,\"journal\":{\"name\":\"Proceedings of ADCOM\",\"volume\":\"496 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of ADCOM\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34048/adcom.2019.phdforumpaper.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ADCOM","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34048/adcom.2019.phdforumpaper.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目标检测和跟踪算法,如YOLO(你只看一次版本V1到V3), SSD和SORT在COCO和本地数据集上实现,用于交通监控,并使用真阳性(TP),真阴性(TN),假阳性(FP),假阴性(FN),平均平均进动(mAP)等性能指标进行评估。在数据集(小型和大型)上训练的设计CNN在测试数据集上具有相似的性能,但是在类内变化较大的大型数据集上训练的CNN能够分类出更多属于轻型和两轮车类的车辆。验证精度达到98%。VGG16的准确率为97%,其次是MobileNetV2和InceptionV3,准确率分别为75%和50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of Efficient Algorithms for Video Surveillance Applications using Artificial Intelligence
Object detection and tracking algorithms such as YOLO(You Look Only Once Version V1 to V3), SSD and SORT implemented on COCO and indigenous data set for traffic surveillance and evaluated using the performance metrics such as True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN), mean Average Precession (mAP). The designed CNN trained on dataset (small and large) had similar performance on test dataset, however the CNN trained on the large datasets that had larger intra-class variations was able classify a greater number of vehicles belonging to light and two-wheeler class. It achieved a validation accuracy of 98%. VGG16 achieved an accuracy of 97% followed by MobileNetV2 and InceptionV3 with 75% and 50% accuracy respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信