基于MapReduce的监控系统视频内容搜索

Zheng Xu, Haiyan Chen
{"title":"基于MapReduce的监控系统视频内容搜索","authors":"Zheng Xu, Haiyan Chen","doi":"10.1109/ICCI-CC.2015.7259393","DOIUrl":null,"url":null,"abstract":"In the last couple of decades, radio-frequency identification (RFID) technology has been widely used in logistics, manufacturing, defense, environment, health care, agriculture, retail, aviation, and information technology. CBIR systems go through sets of stages starting from acquiring the new images, representing these images by extracting the image features, describing the key features and eventually computing the similarity distances to get the most relevant results responding to the query image. In this paper, an integrated CBIR Hadoop-MapReduce based framework which is split into both offline and online phases is introduced. Visual statements are built using the extracted interest points SIFTs. Later on, these visual statements are used to estimate the similarity distances which in turn are used to create the image dataset clusters. A huge vocabulary of SIFTs describing the interest points of the image is constructed. Corresponding statements which reflect the visual content for these features are created by applying the HAC technique.","PeriodicalId":328695,"journal":{"name":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MapReduce based content searching of surveillance system videos\",\"authors\":\"Zheng Xu, Haiyan Chen\",\"doi\":\"10.1109/ICCI-CC.2015.7259393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last couple of decades, radio-frequency identification (RFID) technology has been widely used in logistics, manufacturing, defense, environment, health care, agriculture, retail, aviation, and information technology. CBIR systems go through sets of stages starting from acquiring the new images, representing these images by extracting the image features, describing the key features and eventually computing the similarity distances to get the most relevant results responding to the query image. In this paper, an integrated CBIR Hadoop-MapReduce based framework which is split into both offline and online phases is introduced. Visual statements are built using the extracted interest points SIFTs. Later on, these visual statements are used to estimate the similarity distances which in turn are used to create the image dataset clusters. A huge vocabulary of SIFTs describing the interest points of the image is constructed. Corresponding statements which reflect the visual content for these features are created by applying the HAC technique.\",\"PeriodicalId\":328695,\"journal\":{\"name\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI-CC.2015.7259393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2015.7259393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的几十年里,射频识别(RFID)技术已广泛应用于物流、制造业、国防、环境、医疗保健、农业、零售、航空和信息技术。CBIR系统从获取新图像开始,通过提取图像特征来表示这些图像,描述关键特征,最终计算相似距离,以获得与查询图像最相关的结果。本文介绍了一个基于Hadoop-MapReduce的集成CBIR框架,该框架分为离线和在线两个阶段。使用提取的兴趣点sift构建可视化语句。然后,这些视觉语句被用来估计相似距离,这些距离又被用来创建图像数据集集群。构建了描述图像兴趣点的巨大sift词汇表。通过应用HAC技术创建反映这些特征的可视化内容的相应语句。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MapReduce based content searching of surveillance system videos
In the last couple of decades, radio-frequency identification (RFID) technology has been widely used in logistics, manufacturing, defense, environment, health care, agriculture, retail, aviation, and information technology. CBIR systems go through sets of stages starting from acquiring the new images, representing these images by extracting the image features, describing the key features and eventually computing the similarity distances to get the most relevant results responding to the query image. In this paper, an integrated CBIR Hadoop-MapReduce based framework which is split into both offline and online phases is introduced. Visual statements are built using the extracted interest points SIFTs. Later on, these visual statements are used to estimate the similarity distances which in turn are used to create the image dataset clusters. A huge vocabulary of SIFTs describing the interest points of the image is constructed. Corresponding statements which reflect the visual content for these features are created by applying the HAC technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信