轻度认知障碍或痴呆老年人智能家居的占用率和日常活动事件模型

F. D. Casagrande, E. Zouganeli
{"title":"轻度认知障碍或痴呆老年人智能家居的占用率和日常活动事件模型","authors":"F. D. Casagrande, E. Zouganeli","doi":"10.3384/ECP18153236","DOIUrl":null,"url":null,"abstract":"In this paper we present event anticipation and prediction of sensor data in a smart home environment with a limited number of sensors. Data is collected from a real home with one resident. We apply two state-of-the-art Markovbased prediction algorithms − Active LeZi and SPEED − and analyse their performance with respect to a number of parameters, including the size of the training and testing set, the size of the prediction window, and the number of sensors. The model is built based on a training dataset and subsequently tested on a separate test dataset. An accuracy of 75% is achieved when using SPEED while 53% is achieved when using Active LeZi.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Occupancy and Daily Activity Event Modelling in Smart Homes for Older Adults with Mild Cognitive Impairment or Dementia\",\"authors\":\"F. D. Casagrande, E. Zouganeli\",\"doi\":\"10.3384/ECP18153236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present event anticipation and prediction of sensor data in a smart home environment with a limited number of sensors. Data is collected from a real home with one resident. We apply two state-of-the-art Markovbased prediction algorithms − Active LeZi and SPEED − and analyse their performance with respect to a number of parameters, including the size of the training and testing set, the size of the prediction window, and the number of sensors. The model is built based on a training dataset and subsequently tested on a separate test dataset. An accuracy of 75% is achieved when using SPEED while 53% is achieved when using Active LeZi.\",\"PeriodicalId\":350464,\"journal\":{\"name\":\"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3384/ECP18153236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP18153236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们提出了有限数量传感器的智能家居环境中传感器数据的事件预测和预测。数据是从一个只有一个居民的真实家庭中收集的。我们应用了两种最先进的基于马尔可夫的预测算法——Active LeZi和SPEED——并分析了它们在一些参数方面的性能,包括训练和测试集的大小、预测窗口的大小和传感器的数量。该模型基于训练数据集构建,随后在单独的测试数据集上进行测试。使用SPEED时准确率为75%,而使用Active LeZi时准确率为53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occupancy and Daily Activity Event Modelling in Smart Homes for Older Adults with Mild Cognitive Impairment or Dementia
In this paper we present event anticipation and prediction of sensor data in a smart home environment with a limited number of sensors. Data is collected from a real home with one resident. We apply two state-of-the-art Markovbased prediction algorithms − Active LeZi and SPEED − and analyse their performance with respect to a number of parameters, including the size of the training and testing set, the size of the prediction window, and the number of sensors. The model is built based on a training dataset and subsequently tested on a separate test dataset. An accuracy of 75% is achieved when using SPEED while 53% is achieved when using Active LeZi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信