{"title":"轻度认知障碍或痴呆老年人智能家居的占用率和日常活动事件模型","authors":"F. D. Casagrande, E. Zouganeli","doi":"10.3384/ECP18153236","DOIUrl":null,"url":null,"abstract":"In this paper we present event anticipation and prediction of sensor data in a smart home environment with a limited number of sensors. Data is collected from a real home with one resident. We apply two state-of-the-art Markovbased prediction algorithms − Active LeZi and SPEED − and analyse their performance with respect to a number of parameters, including the size of the training and testing set, the size of the prediction window, and the number of sensors. The model is built based on a training dataset and subsequently tested on a separate test dataset. An accuracy of 75% is achieved when using SPEED while 53% is achieved when using Active LeZi.","PeriodicalId":350464,"journal":{"name":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Occupancy and Daily Activity Event Modelling in Smart Homes for Older Adults with Mild Cognitive Impairment or Dementia\",\"authors\":\"F. D. Casagrande, E. Zouganeli\",\"doi\":\"10.3384/ECP18153236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present event anticipation and prediction of sensor data in a smart home environment with a limited number of sensors. Data is collected from a real home with one resident. We apply two state-of-the-art Markovbased prediction algorithms − Active LeZi and SPEED − and analyse their performance with respect to a number of parameters, including the size of the training and testing set, the size of the prediction window, and the number of sensors. The model is built based on a training dataset and subsequently tested on a separate test dataset. An accuracy of 75% is achieved when using SPEED while 53% is achieved when using Active LeZi.\",\"PeriodicalId\":350464,\"journal\":{\"name\":\"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3384/ECP18153236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The 59th Conference on imulation and Modelling (SIMS 59), 26-28 September 2018, Oslo Metropolitan University, Norway","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3384/ECP18153236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Occupancy and Daily Activity Event Modelling in Smart Homes for Older Adults with Mild Cognitive Impairment or Dementia
In this paper we present event anticipation and prediction of sensor data in a smart home environment with a limited number of sensors. Data is collected from a real home with one resident. We apply two state-of-the-art Markovbased prediction algorithms − Active LeZi and SPEED − and analyse their performance with respect to a number of parameters, including the size of the training and testing set, the size of the prediction window, and the number of sensors. The model is built based on a training dataset and subsequently tested on a separate test dataset. An accuracy of 75% is achieved when using SPEED while 53% is achieved when using Active LeZi.