抽象空间中的随机积分

J. K. Brooks, J. Koziński
{"title":"抽象空间中的随机积分","authors":"J. K. Brooks, J. Koziński","doi":"10.1155/2010/217372","DOIUrl":null,"url":null,"abstract":"We establish the existence of a stochastic integral in a nuclear space setting as follows. Let 𝐸, 𝐹, and 𝐺 be nuclear spaces which satisfy the following conditions: the spaces are reflexive, complete, bornological spaces such that their strong duals also satisfy these conditions. Assume that there is a continuous bilinear mapping of 𝐸×𝐹 into 𝐺. If 𝐻 is an integrable, 𝐸-valued predictable process and 𝑋 is an 𝐹-valued square integrable martingale, then there exists a 𝐺-valued process (∫𝐻𝑑𝑋)𝑡 called the stochastic integral. The Lebesgue space of these integrable processes is studied and convergence theorems are given. Extensions to general locally convex spaces are presented.","PeriodicalId":196477,"journal":{"name":"International Journal of Stochastic Analysis","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stochastic Integration in Abstract Spaces\",\"authors\":\"J. K. Brooks, J. Koziński\",\"doi\":\"10.1155/2010/217372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish the existence of a stochastic integral in a nuclear space setting as follows. Let 𝐸, 𝐹, and 𝐺 be nuclear spaces which satisfy the following conditions: the spaces are reflexive, complete, bornological spaces such that their strong duals also satisfy these conditions. Assume that there is a continuous bilinear mapping of 𝐸×𝐹 into 𝐺. If 𝐻 is an integrable, 𝐸-valued predictable process and 𝑋 is an 𝐹-valued square integrable martingale, then there exists a 𝐺-valued process (∫𝐻𝑑𝑋)𝑡 called the stochastic integral. The Lebesgue space of these integrable processes is studied and convergence theorems are given. Extensions to general locally convex spaces are presented.\",\"PeriodicalId\":196477,\"journal\":{\"name\":\"International Journal of Stochastic Analysis\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stochastic Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2010/217372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stochastic Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2010/217372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们在核空间中建立随机积分的存在性。设、𝐺为满足以下条件的核空间:空间是自反的、完备的、bornological的空间,其强对偶也满足这些条件。假设有一个连续的双线性映射𝐸× . .如果𝐻是一个可积的𝐸-valued可预测过程,𝑋是一个𝐹-valued平方可积的鞅,那么存在一个𝐺-valued过程(∫𝐻𝑑𝑋)𝑡称为随机积分。研究了这些可积过程的Lebesgue空间,并给出了收敛定理。给出了对一般局部凸空间的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic Integration in Abstract Spaces
We establish the existence of a stochastic integral in a nuclear space setting as follows. Let 𝐸, 𝐹, and 𝐺 be nuclear spaces which satisfy the following conditions: the spaces are reflexive, complete, bornological spaces such that their strong duals also satisfy these conditions. Assume that there is a continuous bilinear mapping of 𝐸×𝐹 into 𝐺. If 𝐻 is an integrable, 𝐸-valued predictable process and 𝑋 is an 𝐹-valued square integrable martingale, then there exists a 𝐺-valued process (∫𝐻𝑑𝑋)𝑡 called the stochastic integral. The Lebesgue space of these integrable processes is studied and convergence theorems are given. Extensions to general locally convex spaces are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信