递归预测误差自适应估计方法

J. Moore, H. Weiss
{"title":"递归预测误差自适应估计方法","authors":"J. Moore, H. Weiss","doi":"10.1109/TSMC.1979.4310182","DOIUrl":null,"url":null,"abstract":"Convenient prediction error methods for identification and adaptive state estimation are proposed and the convergence of the recursive prediction error methods to achieve off-line prediction error minimization solutions studied. To set the recursive prediction error algorithms in another perspective, specializations are derived from significant simplifications to a class of extended Kalman filters. The latter are designed for linear state space models with the unknown parameters augmenting the state vector and in such a way as to yield good convergence properties. Also specializations to approximate maximum likelihood recursions, and connections to the extended least squares algorithms are noted.","PeriodicalId":375119,"journal":{"name":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Recursive prediction error methods for adaptive estimation\",\"authors\":\"J. Moore, H. Weiss\",\"doi\":\"10.1109/TSMC.1979.4310182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convenient prediction error methods for identification and adaptive state estimation are proposed and the convergence of the recursive prediction error methods to achieve off-line prediction error minimization solutions studied. To set the recursive prediction error algorithms in another perspective, specializations are derived from significant simplifications to a class of extended Kalman filters. The latter are designed for linear state space models with the unknown parameters augmenting the state vector and in such a way as to yield good convergence properties. Also specializations to approximate maximum likelihood recursions, and connections to the extended least squares algorithms are noted.\",\"PeriodicalId\":375119,\"journal\":{\"name\":\"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMC.1979.4310182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.1979.4310182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

提出了方便的预测误差识别和自适应状态估计方法,并研究了递归预测误差方法的收敛性,以实现离线预测误差最小化解。为了从另一个角度设置递归预测误差算法,特殊化是从对一类扩展卡尔曼滤波器的显著简化中派生出来的。后者是针对具有未知参数扩充状态向量的线性状态空间模型而设计的,具有良好的收敛性。此外,还指出了近似最大似然递归的专门化,以及与扩展最小二乘算法的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recursive prediction error methods for adaptive estimation
Convenient prediction error methods for identification and adaptive state estimation are proposed and the convergence of the recursive prediction error methods to achieve off-line prediction error minimization solutions studied. To set the recursive prediction error algorithms in another perspective, specializations are derived from significant simplifications to a class of extended Kalman filters. The latter are designed for linear state space models with the unknown parameters augmenting the state vector and in such a way as to yield good convergence properties. Also specializations to approximate maximum likelihood recursions, and connections to the extended least squares algorithms are noted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信