使用SQL集成异构流和历史数据源

Jefferson Amará, Victor Ströele, R. Braga, M. Dantas, Michael A. Bauer
{"title":"使用SQL集成异构流和历史数据源","authors":"Jefferson Amará, Victor Ströele, R. Braga, M. Dantas, Michael A. Bauer","doi":"10.5753/jidm.2022.2488","DOIUrl":null,"url":null,"abstract":"Applications capable of integrating data from historical and streaming sources can make the most contextualized and enriched decision-making. However, the complexity of data integration over heterogeneous data sources can be a hard task for querying in this context. Approaches that facilitate data integration, abstracting details and formats of the primary sources can meet these needs. This work presents a framework that allows the integration of streaming and historical data in real-time, abstracting syntactic aspects of queries through the use of SQL as a standard language for querying heterogeneous sources. The framework was evaluated through an experiment using relational datasets and real data produced by sensors. The results point to the feasibility of the approach.","PeriodicalId":301338,"journal":{"name":"J. Inf. Data Manag.","volume":"295 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrating Heterogeneous Stream and Historical Data Sources using SQL\",\"authors\":\"Jefferson Amará, Victor Ströele, R. Braga, M. Dantas, Michael A. Bauer\",\"doi\":\"10.5753/jidm.2022.2488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Applications capable of integrating data from historical and streaming sources can make the most contextualized and enriched decision-making. However, the complexity of data integration over heterogeneous data sources can be a hard task for querying in this context. Approaches that facilitate data integration, abstracting details and formats of the primary sources can meet these needs. This work presents a framework that allows the integration of streaming and historical data in real-time, abstracting syntactic aspects of queries through the use of SQL as a standard language for querying heterogeneous sources. The framework was evaluated through an experiment using relational datasets and real data produced by sensors. The results point to the feasibility of the approach.\",\"PeriodicalId\":301338,\"journal\":{\"name\":\"J. Inf. Data Manag.\",\"volume\":\"295 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Data Manag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/jidm.2022.2488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Data Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/jidm.2022.2488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

能够集成来自历史和流数据源的数据的应用程序可以做出最情境化和最丰富的决策。然而,异构数据源上的数据集成的复杂性对于在这种上下文中进行查询可能是一项艰巨的任务。促进数据集成、抽象主要数据源的细节和格式的方法可以满足这些需求。这项工作提出了一个框架,允许实时集成流数据和历史数据,通过使用SQL作为查询异构源的标准语言来抽象查询的语法方面。通过使用关系数据集和传感器产生的真实数据进行实验,对该框架进行了评估。结果表明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Heterogeneous Stream and Historical Data Sources using SQL
Applications capable of integrating data from historical and streaming sources can make the most contextualized and enriched decision-making. However, the complexity of data integration over heterogeneous data sources can be a hard task for querying in this context. Approaches that facilitate data integration, abstracting details and formats of the primary sources can meet these needs. This work presents a framework that allows the integration of streaming and historical data in real-time, abstracting syntactic aspects of queries through the use of SQL as a standard language for querying heterogeneous sources. The framework was evaluated through an experiment using relational datasets and real data produced by sensors. The results point to the feasibility of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信