共识标记多伯努利滤波用于分布式空间碎片跟踪

B. Wei, B. Nener
{"title":"共识标记多伯努利滤波用于分布式空间碎片跟踪","authors":"B. Wei, B. Nener","doi":"10.1109/ICCAIS.2017.8217577","DOIUrl":null,"url":null,"abstract":"Space debris poses great challenge for the safe operation of spacecraft. This paper addresses the problem of distributed space debris tracking with consensus Labeled Multi-Bernoulli filtering. Sensor network of nodes with sensing, processing and communication capabilities is used to track space debris. Labeled Multi-Bernoulli filtering is used as the tracking filter. Data incest problem is solved by Kullback-Leibler Averaging. Simulation experiments confirm the effectiveness of the proposed algorithm.","PeriodicalId":410094,"journal":{"name":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Consensus labeled multi-Bernoulli filtering for distributed space debris tracking\",\"authors\":\"B. Wei, B. Nener\",\"doi\":\"10.1109/ICCAIS.2017.8217577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space debris poses great challenge for the safe operation of spacecraft. This paper addresses the problem of distributed space debris tracking with consensus Labeled Multi-Bernoulli filtering. Sensor network of nodes with sensing, processing and communication capabilities is used to track space debris. Labeled Multi-Bernoulli filtering is used as the tracking filter. Data incest problem is solved by Kullback-Leibler Averaging. Simulation experiments confirm the effectiveness of the proposed algorithm.\",\"PeriodicalId\":410094,\"journal\":{\"name\":\"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS.2017.8217577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2017.8217577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

空间碎片对航天器的安全运行提出了巨大的挑战。研究了基于一致标记多伯努利滤波的分布式空间碎片跟踪问题。具有感知、处理和通信能力的节点传感器网络用于跟踪空间碎片。采用标记多伯努利滤波作为跟踪滤波器。用Kullback-Leibler平均法解决数据乱伦问题。仿真实验验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consensus labeled multi-Bernoulli filtering for distributed space debris tracking
Space debris poses great challenge for the safe operation of spacecraft. This paper addresses the problem of distributed space debris tracking with consensus Labeled Multi-Bernoulli filtering. Sensor network of nodes with sensing, processing and communication capabilities is used to track space debris. Labeled Multi-Bernoulli filtering is used as the tracking filter. Data incest problem is solved by Kullback-Leibler Averaging. Simulation experiments confirm the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信