利用内聚网络分析预测大规模在线开放课程(MOOCs)的成功

S. Crossley, M. Dascalu, D. McNamara, R. Baker, Stefan Trausan-Matu
{"title":"利用内聚网络分析预测大规模在线开放课程(MOOCs)的成功","authors":"S. Crossley, M. Dascalu, D. McNamara, R. Baker, Stefan Trausan-Matu","doi":"10.22318/CSCL2017.17","DOIUrl":null,"url":null,"abstract":"This study uses Cohesion Network Analysis (CNA) indices to identify student patterns related to course completion in a massive open online course (MOOC). This analysis examines a subsample of 320 students who completed at least one graded assignment and produced at least 50 words in discussion forums in a MOOC on educational data mining. The findings indicate that CNA indices predict with substantial accuracy (76%) whether students complete the MOOC, helping us to better understand student retention in this MOOC and to develop more actionable automated signals of student success.","PeriodicalId":120843,"journal":{"name":"International Conference on Computer Supported Collaborative Learning","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Predicting Success in Massive Open Online Courses (MOOCs) Using Cohesion Network Analysis\",\"authors\":\"S. Crossley, M. Dascalu, D. McNamara, R. Baker, Stefan Trausan-Matu\",\"doi\":\"10.22318/CSCL2017.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses Cohesion Network Analysis (CNA) indices to identify student patterns related to course completion in a massive open online course (MOOC). This analysis examines a subsample of 320 students who completed at least one graded assignment and produced at least 50 words in discussion forums in a MOOC on educational data mining. The findings indicate that CNA indices predict with substantial accuracy (76%) whether students complete the MOOC, helping us to better understand student retention in this MOOC and to develop more actionable automated signals of student success.\",\"PeriodicalId\":120843,\"journal\":{\"name\":\"International Conference on Computer Supported Collaborative Learning\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Supported Collaborative Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22318/CSCL2017.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Supported Collaborative Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22318/CSCL2017.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本研究使用凝聚力网络分析(CNA)指标来识别大规模在线开放课程(MOOC)中与课程完成相关的学生模式。本分析考察了320名学生的子样本,这些学生在教育数据挖掘的MOOC论坛上完成了至少一项评分作业,并发表了至少50个单词。研究结果表明,CNA指数预测学生是否完成了MOOC课程,准确率很高(76%),这有助于我们更好地了解学生在MOOC课程中的保留率,并开发出更多可操作的学生成功自动化信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Success in Massive Open Online Courses (MOOCs) Using Cohesion Network Analysis
This study uses Cohesion Network Analysis (CNA) indices to identify student patterns related to course completion in a massive open online course (MOOC). This analysis examines a subsample of 320 students who completed at least one graded assignment and produced at least 50 words in discussion forums in a MOOC on educational data mining. The findings indicate that CNA indices predict with substantial accuracy (76%) whether students complete the MOOC, helping us to better understand student retention in this MOOC and to develop more actionable automated signals of student success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信